Fractional order PDα-type ILC for linear continuous time-delay wwitched system with disturbance measurement and uncertainties noise
Publish place: Journal of Hyperstructures، Vol: 13، Issue: 2
Publish Year: 1403
Type: Journal paper
Language: English
View: 45
This Paper With 16 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_JHSMS-13-2_013
Index date: 14 December 2024
Fractional order PDα-type ILC for linear continuous time-delay wwitched system with disturbance measurement and uncertainties noise abstract
This study investigates the efficacy of a novel PDα-type fractional-order iterative learning control (FOILC) approach for a class of fractional-order linear continuous-time delaying switched systems. The approach is evaluated in terms of Lp norm performance, aiming to mitigate the challenges associated with time delays in repetitive regulation of fractional-order linear systems. The generalised Young inequality of the convolution integral is used to leverage the resilience of the PDα-type approach in the iteration domain when the systems are perturbed by constrained external disturbances. We next analyse the convergence of the techniques for noise-free systems. The results demonstrate that it is feasible to guarantee both convergence and robustness over the duration of the experiment in certain situations. We study the convergence of error for the proposed class of fractional-order linear continuous-time delaying switched systems.
Fractional order PDα-type ILC for linear continuous time-delay wwitched system with disturbance measurement and uncertainties noise Keywords:
Fractional order PDα-type ILC for linear continuous time-delay wwitched system with disturbance measurement and uncertainties noise authors
Omprakash Dewangan
Indira Gandhi Govt. College Pandaria, Distt.- Kabirdham, Hemchand Yadav Vishwavidyalaya Durg, Chhattisgarh, India - ۴۹۱۵۵۹.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :