سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

An Improved Land Use Classification Scheme Using Multi-Seasonal Satellite Images and Secondary Data

Publish Year: 1399
Type: Journal paper
Language: English
View: 43

This Paper With 11 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_ECOPER-8-2_004

Index date: 22 December 2024

An Improved Land Use Classification Scheme Using Multi-Seasonal Satellite Images and Secondary Data abstract

Aims: Generally, optical satellite images are used to produce a land use map. Due to spectral mixing, these data can affect the accuracy of land use classifications, especially in areas with diverse vegetation. Materials & Methods: In the present study, in order to achieve the correct land use classification in a mountainous-forested basin, four Landsat 8 thermal images were used with a few additional information (Normalized Difference Vegetation Index (NDVI), Digital Elevation Model (DEM), slope angle and slope aspect) along with optical data and data of multi-temporal images. Findings: Results showed that thermal data, slope angle and DEM have a significant role in increasing the accuracy of land use classification, so that they increase the overall accuracy by about 3-10% from late spring to the beginning of autumn. Among the data used, slope angle and elevation data have a significant role in increasing the accuracy of agricultural classes. The total accuracy and Kappa coefficient in land use maps obtained from monotemporal images in the wet season (late spring; 83.93 and 0.82) and early summer (83.79 and 0.81)) are more than the dry season (late summer; 81.25 and 0.79) and early autumn). Conclusion: Generally, the highest total accuracy among monotemporal images generated from optical data is about 83.95%, while the application of thermal and additional data along with optical data and the combination of monotemporal images of the wet season, the accuracy of the information multitemporal increased to 91.60% of the land use map.

An Improved Land Use Classification Scheme Using Multi-Seasonal Satellite Images and Secondary Data Keywords:

An Improved Land Use Classification Scheme Using Multi-Seasonal Satellite Images and Secondary Data authors

S. Mirzaei

Watershed Management Engineering Department, Natural Resources Faculty, Tarbiat Modares University, Nur, Iran

M. Vafakhah

The Centre for Advanced Modelling & Geospatial Information Systems (CAMGIS), Engineering & Information Technology Faculty, University of Technology Sydney, Ultimo, Australia

B. Pradhan

Energy & Mineral Resources Engineering Department, Sejong University, Seoul, South Korea

S.J. Alavi

Forestry Department, Natural Resources Faculty, Tarbiat Modares University, Nur, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Afrasinei GM, Melis MT, Buttau C, Bradd JM, Arras C, ...
Naseri MH, MotazedianM. Investigation of quickbird satellite image capability in ...
Thakkar AK, Desai VR, Patel A, Potdar MB. Post-classification corrections ...
Hazarika N, Das AK, Borah SB. Assessing land-use changes driven ...
Phukan P, Thakuriah G, Saikia R. Land use land cover ...
Karan SK, Samadder SR. Accuracy of land use change detection ...
López-Granados E, Mendoza ME, González DI. Linking geomorphologic knowledge, RS ...
Manandhar R, Odeh IO, Ancev T. Improving the accuracy of ...
Ustuner M, Sanli FB, Dixon B. Application of support vector ...
Gomariz-Castillo F, Alonso-Sarría F, Cánovas-García F. Improving classification accuracy of ...
Gheitury M, Heshmati M, Ahmadi M. Longterm land use change ...
Luyssaert S, Jammet M, Stoy PC, Estel S, Pongratz J, ...
Prasad SV, Savithri TS, Krishna IV. Comparison of accuracy measures ...
Senf C, Leitão PJ, Pflugmacher D, Van Der Linden S, ...
Kantakumar LN, Neelamsetti P. Multi-temporal land use classification using hybrid ...
Beyer F, Jarmer T, Siegmann B, Fischer P. Improved crop ...
Alganci U, Sertel E, Ozdogan M, Ormeci C. Parcel-level identification ...
Eisavi V, Homayouni S, Yazdi AM, Alimohammadi A. Land cover ...
Basukala AK, Oldenburg C, Schellberg J, Sultanov M, Dubovyk O. ...
Nguyen TT, Pham TT. Incorporating ancillary data into landsat ۸ ...
Ildoromi A, Safari Shad M. Land use change prediction using ...
Mushore TD, Mutanga O, Odindi J, DubeT. Assessing the potential ...
Sinha S, Sharma LK, Nathawat MS. Improved land-use/land-cover classification of ...
Sun L, Schulz K . The improvement of land cover ...
Barrett B, Nitze I, Green S, Cawkwell F. Assessment of ...
Pencue-Fierro EL, Solano-Correa YT, Corrales-Muñoz JC, Figueroa-Casas A. A semi-supervised ...
Mohammady M, Amiri M, Dastorani J. Modeling land use changes ...
Wulder MA, White JC, Loveland TR, Woodcock CE, Belward AS, ...
Lu D, Weng Q. A survey of image classification methods ...
Madhura M, Venkatachala S. Comparison of supervised classification methods on ...
Castillo M, Muñoz-Salinas E. Controls on peak discharge at the ...
Jia K, Wei X, Gu X, Yao Y, Xie X, ...
Namdar M, Adamowski J, Saadat H, Sharifi F, Khiri A. ...
Chuvieco E. Fundamentals of satellite remote sensing. Boca Raton: CRC ...
Zoungrana BJ, Conrad C, Amekudzi LK, Thiel M, Da ED, ...
Sesnie SE, Hagell SE, Otterstrom SM, Chambers CL, Dickson BG. ...
نمایش کامل مراجع