سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Land Subsidence Modelling Using Particle Swarm Optimization Algorithm and Differential Interferometry Synthetic Aperture Radar

Publish Year: 1399
Type: Journal paper
Language: English
View: 45

This Paper With 11 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_ECOPER-8-2_002

Index date: 22 December 2024

Land Subsidence Modelling Using Particle Swarm Optimization Algorithm and Differential Interferometry Synthetic Aperture Radar abstract

Aims: Land subsidence is one of the phenomena that has been abundantly observed in Iran's fertile plains in recent decades. If it is not properly managed, it will cause irreparable damages. So, regarding the frequency of subsidence phenomenon, the evaluation of the potential of the country's fertile plains is necessary. Towards this, the present study is formulated to assess the vulnerability of the Tehran-Karaj-Shahriyar Aquifer to land subsidence. Materials & Methods: The vulnerability of Tehran-Karaj-Shahriyar Aquifer was determined using the GARDLIF method in a Geographic Information System (GIS) environment. Seven parameters affecting ground subsidence including groundwater loss, aquifer media, recharge, discharge, land use, aquifer layer thickness, and the fault distance were used to identify areas susceptible to land subsidence. Then, they were ranked and weighted in seven separate layers. In the next step, the subsidence location and rates were obtained using the differential interferometric synthetic aperture radar (DInSAR) method. The weights of the input parameters of the GARDLIF model using the subsidence map obtained from the DInSAR method and the particle optimization algorithm (PSO) were then optimized. Accordingly, the subsidence susceptibility map was generated based on the new weights. Findings & Conclusion: The results showed that by increasing correlation coefficient (r) from 0.55 to 0.67 and the amounts of Coefficient of Determination (R2) from 0.39 to 0.53 between the subsidence index and the obtained subsidence in the aquifer, the optimization of weights applied by the PSO algorithm is more capable for evaluating the land subsidence than the map created by GARDLIF. It was also found that the central parts of the study aquifer had the largest potential for land subsidence.

Land Subsidence Modelling Using Particle Swarm Optimization Algorithm and Differential Interferometry Synthetic Aperture Radar Keywords:

Land Subsidence Modelling Using Particle Swarm Optimization Algorithm and Differential Interferometry Synthetic Aperture Radar authors

Z. Chatrsimab

Department of GIS/RS, Science and Research Branch, Islamic Azad University, Tehran, Iran

A. Alesheikh

GIS Engineering Department, K.N. Toosi University of Technology, Tehran, Iran

B. Vosoghi

Geodesy Department, K.N. Toosi University of Technology, Tehran, Iran

S. Behzadi

Civil Engineering Department, Shahid Rajaee Teacher Training University, Tehran, Iran

M. Modiri

Geography Urban Panning Department, Malek Ashtar University of Technology, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Motiee H, McBean E. Assessment of climate change impacts on ...
Alijani R, Vafakhah M, Malekian A. Spatial and temporal analysis ...
Motagh M, Walter TR, Sharifi MA, Fielding E, Schenk A, ...
Bazrafshan O, Zamani H, Etedali HR, Dehghanpir S. Assessment of ...
Bazrafshan O, Parandin F, Farokhzadeh B. Assessment of hydro-meteorological drought ...
Hu R, Wang S, Lee C, Li M. Characteristics and ...
Bouwer H. Groundwater hydrology. New York: McGraw Hill College; ۱۹۷۸. ...
Maleki A, Rezaei P. Forecast locations at risk of subsidence ...
Kuehn F, Albiol D, Cooksley G, Duro J, Granda J, ...
Taheri Tizro A, Hosseini A, Kamali M. Modeling alluvial aquifer ...
Hazbavi Z, Sadeghi SH. Watershed health characterization using reliability-resilience-vulnerability conceptual ...
Bhattarai R, Alifu H, Maitiniyazi A, Kondoh A. Detection of ...
Fulton A. Land subsidence: What is it and why is ...
Kim K, Lee S, Oh HJ. Prediction of ground subsidence ...
Oh HJ, Lee S. Assessment of ground subsidence using GIS ...
Putra DP, Setianto A, Keokhampui K, Fukuoka H. Land subsidence ...
Xu YS, Yuan Y, Shen SL, Yin ZY, Wu HN, ...
Afifi MA. Assess the potential of land subsidence and its ...
Nadiri AA, Taheri Z, Khatibi R, Barzegari G, Dideban Kh. ...
Manafiazar A, Khamehchiyan M, Nadiri A. Comparison of vulnerability of ...
Manafiazar A, Khamechian M, Nadiri A. Optimization of the ALPRIFT ...
Naderi K, Nadiri AA, Asghari Moghaddam A, Kord M. A ...
Bouwer H. Groundwater hydrology. Lotfi-Sadigh A, translator. Tabriz: Sahand University ...
Galloway DL, Burbey TJ. Review: Regional land subsidence accompanying groundwater ...
Pacheco J, Arzate J, Rojas E, Arroyo M, Yutsis V, ...
Alizadeh A. Principles of applied hydrology. ۹th Edition. Mashhad: Imam ...
Piscopo G. Groundwater vulnerability map explanatory notes. Parramatta: NSW Department ...
Hafezimoghadas N, Ghafoori M. Enviromental Geology. ۱st Edition. Shahrood: Shahrood ...
Kennedy J, Eberhart RC. Particle swarm optimization. Proceedings of ICNN'۹۵-International ...
Enshaee A, Hooshmand R. Application of fuzzy particle swarm optimization ...
Moghaddasi M, Morid S, Araghinejad Sh. Optimization of water allocation ...
Alizamir M, Azhdary Moghadam M, Hashemi Monfared A, Shamsipour A. ...
Zebker HA, Goldstein RM. Topographic mapping from interferometric synthetic aperture ...
Ahmad W, Choi M, Kim S, Kim D. Detection of ...
Caló F, Notti D, Galve JP, Abdikan S, Görüm T, ...
Rahmati O, Falah F, Naghibi SA, Biggs T, Soltani M, ...
Razmgir R, Mousavi M, Shemshaki A, Bolourchi MJ. Tehran-Shahriar Plain ...
نمایش کامل مراجع