سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Improving the Accuracy of Land Use/Cover Maps using an Optimization Technique

Publish Year: 1398
Type: Journal paper
Language: English
View: 31

This Paper With 11 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_ECOPER-7-4_001

Index date: 22 December 2024

Improving the Accuracy of Land Use/Cover Maps using an Optimization Technique abstract

Mapping of Land use/cover is important for many activities of planning and management, especially in arid areas. Nowadays, satellite imagery and remote sensing techniques, which provide timely and high capability data, are widely used in producing this kind of mapping. The main objective of this study is to produce an actual land use map using advanced pixel-based (MLP, SVM, and SOM) approaches. The most important challenge, in this case, is to determine the optimum structure of classification methods. The Taguchi method is used to optimize the structure of MLP, SVM, and SOM methods. Results show that the Taguchi method can be effectively used to cope with this problem. It significantly reduces the number of classification tests. We also showed that there are significant differences between the results of the SVM method with those of the MLP and SOM methods (χ2 more than 100) and that SVM model is more efficient than other methods. The accurate map produced by the optimized SVM approach (Overall accuracy of 0.93) showed that this method has a better performance.

Improving the Accuracy of Land Use/Cover Maps using an Optimization Technique Keywords:

Improving the Accuracy of Land Use/Cover Maps using an Optimization Technique authors

M. Hayatzadeh

Nature Engineering Department, Agriculture & Natural Resources Faculty, Ardakan University, Yazd, Iran

A. Fathzadeh

Nature Engineering Department, Agriculture & Natural Resources Faculty, Ardakan University, Yazd, Iran

V. Moosavi

Watershed Management Engineering Department, Natural Resources Faculty, Tarbiat Modares University, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Groot R. Function-analysis and valuation as a tool to assess ...
Jafarian Jeloudar Z, Shabanzadeh S, Kavian A, Shokri M. Spatial ...
Parvizi Y, Heshmati M, Gheituri M. Intelligent approaches to analysing ...
Farajollahi A, Asgari HR, Ownagh M, Mahboubi MR, Salman Mahini ...
Ildoromi A, Safari Shad M. Land use change prediction using ...
Demková L, Bobuľská L. Two centuries of land use changes ...
Afshari M, Hashemi SS, Attaeian B. Land use change effect ...
Gong P, Howarth PJ. The use of structural information for ...
Gong P, Howarth PJ. An assessment of some factors influencing ...
Gong P, Howarth PJ. Frequency-based contextual classification and gray-level vector ...
Deguchi C, Sugio S. Estimations for percentage of impervious area ...
Ridd MK. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ...
Xu B, Gong P, Seto E, Spear R. Comparison of ...
Moosavi V, Talebi A, Shirmohammadi B. Producing a landslide inventory ...
Breiman L. Random forests. Mach Learn. ۲۰۰۱;۴۵(۱):۵-۳۲ ...
Huang C, Davis LS, Townshend JRG. An assessment of support ...
Pal M. Random forest classifier for remote sensing classification. Int ...
Carreiras J, Pereira J, Campagnolo M, Shimabukuro YE. Assessing the ...
Gislason PO, Benediktsson JA, Sveinsson JR. Random forests for land ...
Brenning A. Benchmarking classifiers to optimally integrate terrain analysis and ...
Otukei JR, Blaschke T. Land cover change assessment using decision ...
Oruc M, Marangoz M, Buyuksalih G. Comparison of pixel-based and ...
Pakhale GK, Gupta PK. Comparison of advanced pixel based (ANN ...
Vapnik V. Statistical learning theory. ۲nd Edition Berlin: Springer Science ...
Wang TY, Huang CY. Improving forecasting performance by employing the ...
Chou ChS, Ho CY, Huang CI. The optimum conditions for ...
Hayatzadeh M, Ekhtesasi M, Malekinezhad H, Fathzadeh A, Azimzadeh H. ...
Mather P, Tso B. Classification methods for remotely sensed data. ...
Frizzelle BG, Moody A. Mapping continuous distributions of land cover: ...
Hopfield JJ. Neural networks and physical systems with emergent collective ...
Richards JA, Jia X. Remote Sensing Digital Image Analysis. Berlin: ...
Kohonen T. Self-organized formation of topologically correct feature maps. Biol ...
Sathya R, Abraham A. Comparison of supervised and unsupervised learning ...
Shrivastava P, Singh P, Shrivastava G. Image classification using SOM ...
Hsu CW, Chang CC, Lin CJ. A practical guide to ...
Belousov AI, Verzakov SA, Von Frese J. Applicational aspects of ...
Marjanović M, Kovačević M, Bajat B, Voženílek V. Landslide susceptibility ...
Laliberte AS, Rango A, Havstad KM, Paris JF, Beck RF, ...
Barlow J, Franklin S, Martin Y. High spatial resolution satellite ...
Dragut L, Blaschke T. Automated classification of landform elements using ...
Kerle N, de Leeuw J. Reviving legacy population maps with ...
Espindola GM, Câmara G, Reis IA, Bins LS, Monteiro AM. ...
Foody GM. Thematic map comparison: Evaluating the statistical significance of ...
Zar JH. Biostatistical analysis. ۵th Edition. London: Pearson; ۲۰۰۹ ...
Bradley JV. Distribution-free statistical tests. Upper Saddle River: Prentice-Hall; ۱۹۶۸ ...
Masoudi M, Jahantigh H, Jokar P. Land use planning using ...
Zanaty EA. Support vector machines (SVMs) versus multilayer perception (MLP) ...
Bagan H, Wang Q, Watanabe M, Kameyama S, Bao Y. ...
نمایش کامل مراجع