سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Monthly River Flow Prediction using Adaptive Neuro-Fuzzy Inference System (A Case Study: Gharasu Watershed, Ardabil Province-Iran)

Publish Year: 1394
Type: Journal paper
Language: English
View: 54

This Paper With 14 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_ECOPER-3-4_004

Index date: 22 December 2024

Monthly River Flow Prediction using Adaptive Neuro-Fuzzy Inference System (A Case Study: Gharasu Watershed, Ardabil Province-Iran) abstract

There is different methods for simulating river flow. Some of thesemethods such as the process based hydrological models need multiple input data and high expertise about the hydrologic process. But some of the methods such as the regression based and artificial inteligens modelsare applicable even in data scarce conditions. This capability can improve efficiency of the hydrologic modeling in ungauged watersheds in developing countries. This study attempted to investigate the capability of the Adaptive Neuro-Fuzzy Inference System (ANFIS) for simulating the monthly river flow in three hydrometric stations of Pole-Almas, Nir, and Lai; which have different rate of river flow. The simulations are conducted using three input data including the precipitation, temperature, and the average monthly hydrograph (AMH). The study area islocated in the Gharasu Watershed, Ardabil Province, Iran. For this aim, six groupsof input data (M1, M2, … M6) were defined based on different combinations of the above-mentioned input data. Theconducted simulations in Pole-Almas and Nir stations have presented an acceptable results; but in Lai station it was very poor. This different behavoirs was referred to the lower volume of flow and consequently irregularity and variability of flow in Lai station, which cause the decrease of accuracy in the simulation. The AMH parameter had an important role in increasing the accuracy of the simulations in Pole-Almas and Nir stations. The findings of this study showed that ANFIS is an efficient tool for river flow simulation; but in application of ANFIS, the selection and utilization of relevant and efficient input data will have a determinativerole in achieving to a successful modeling.

Monthly River Flow Prediction using Adaptive Neuro-Fuzzy Inference System (A Case Study: Gharasu Watershed, Ardabil Province-Iran) Keywords:

Monthly River Flow Prediction using Adaptive Neuro-Fuzzy Inference System (A Case Study: Gharasu Watershed, Ardabil Province-Iran) authors

Hussein Akbari

PhD Student, Department of Watershed Management, Faculty of Natural Resources Environment, Tarbiat Modares University, Mazandaran, Nour, Iran

Mehdi Vafakhah

Associate Professor, Department of Watershed Management, Faculty of Natural Resources Environment, TarbiatModares University, Mazandaran, Noor, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Akbari Majdar, H., Bahremand, A.R., Najafinejad, A. and Sheikh, V.B. ...
Arnold, J.G., Srinivasan, R., Muttiah, R.S. and Williams, J.R. Large ...
Bosch, D.D., Bingner, R.L. Theurer, F.D. Felton, G. and Chaubey, ...
Bouraoui, F. and Dillaha, T. ANSWERS-۲۰۰۰: runoff and sediment transport ...
Chang, F.J., Hu, H.F. and Chen, Y.C.Counter propagation fuzzy–neural network ...
Chen, S.H., Lin, Y.H., Chang, L.C. and Chang, F.J.The strategy ...
Elabd, S. and Schlenkhoff, A.ANFIS and BP neural network for ...
Firat, M. Artificial intelligence techniques for river flow forecasting in ...
Green, I.R.A. and Stephenson, D. Criteria for comparison of single ...
He, Z., Wen, X., Liu, H. and Du, J.A.Comparative study ...
Hosseini S.M. and Mahjouri N. Integrating support vector regression and ...
Hsu, N.S., Huang, C.L. and Wei, C.C. Multi-phase intelligent decision ...
Jang, J.S.R.,ANFIS: Adaptive-network-based fuzzy inference system. IEEET ransactions on Systems. ...
Jothiprakash, V. and Garg, V. Reservoir sedimentation estimation using artificial ...
Kadhim, H.H. Self learning of ANFIS inverse control using iterative ...
Keskin, M.E., Taylan, D. and Terzi, O.Adaptive neural-based fuzzy inference ...
Kisi, O. River flow modeling using artificial neural networks. J. ...
Kumar A.R., Sudheer K.P., Jain S.K. and Agarwal P.K. Rainfall-runoff ...
Mutlu, E., Chaubey, I., Hexmoor, H. and Bajwa, S.G.Comparison of ...
Nayak, P.C., Sudheer, K.P., Rangan D.M. and Ramasastri K.S., A ...
Poff, N.L. and Ward, J.V. Implications of streamflow variability and ...
Shu, C. and Ouarda, T.B. Regional flood frequency nalysis at ...
Takagi, T. and Sugeno, M. Fuzzy identification systems and its ...
Talei, A., Chua, L. H., Quek, C. and Jansson P. ...
Vafakhah, M. Application of artificial neural networks and adaptive neuro-fuzzy ...
Vafakhah, M., Janizadeh, S. and Khosrobeigi Bozchaloei, S. Application of ...
Wang, W., Chau, K.W., Chang, C.T. and Qui, L.A comparison ...
Akbari Majdar, H., Bahremand, A.R., Najafinejad, A. and Sheikh, V.B. ...
Arnold, J.G., Srinivasan, R., Muttiah, R.S. and Williams, J.R. Large ...
Bosch, D.D., Bingner, R.L. Theurer, F.D. Felton, G. and Chaubey, ...
Bouraoui, F. and Dillaha, T. ANSWERS-۲۰۰۰: runoff and sediment transport ...
Chang, F.J., Hu, H.F. and Chen, Y.C.Counter propagation fuzzy–neural network ...
Chen, S.H., Lin, Y.H., Chang, L.C. and Chang, F.J.The strategy ...
Elabd, S. and Schlenkhoff, A.ANFIS and BP neural network for ...
Firat, M. Artificial intelligence techniques for river flow forecasting in ...
Green, I.R.A. and Stephenson, D. Criteria for comparison of single ...
He, Z., Wen, X., Liu, H. and Du, J.A.Comparative study ...
Hosseini S.M. and Mahjouri N. Integrating support vector regression and ...
Hsu, N.S., Huang, C.L. and Wei, C.C. Multi-phase intelligent decision ...
Jang, J.S.R.,ANFIS: Adaptive-network-based fuzzy inference system. IEEET ransactions on Systems. ...
Jothiprakash, V. and Garg, V. Reservoir sedimentation estimation using artificial ...
Kadhim, H.H. Self learning of ANFIS inverse control using iterative ...
Keskin, M.E., Taylan, D. and Terzi, O.Adaptive neural-based fuzzy inference ...
Kisi, O. River flow modeling using artificial neural networks. J. ...
Kumar A.R., Sudheer K.P., Jain S.K. and Agarwal P.K. Rainfall-runoff ...
Mutlu, E., Chaubey, I., Hexmoor, H. and Bajwa, S.G.Comparison of ...
Nayak, P.C., Sudheer, K.P., Rangan D.M. and Ramasastri K.S., A ...
Poff, N.L. and Ward, J.V. Implications of streamflow variability and ...
Shu, C. and Ouarda, T.B. Regional flood frequency nalysis at ...
Takagi, T. and Sugeno, M. Fuzzy identification systems and its ...
Talei, A., Chua, L. H., Quek, C. and Jansson P. ...
Vafakhah, M. Application of artificial neural networks and adaptive neuro-fuzzy ...
Vafakhah, M., Janizadeh, S. and Khosrobeigi Bozchaloei, S. Application of ...
Wang, W., Chau, K.W., Chang, C.T. and Qui, L.A comparison ...
نمایش کامل مراجع