Land Use Change Prediction using a Hybrid (CA-Markov) Model
Publish place: Ecopersia، Vol: 5، Issue: 1
Publish Year: 1395
Type: Journal paper
Language: English
View: 37
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_ECOPER-5-1_001
Index date: 22 December 2024
Land Use Change Prediction using a Hybrid (CA-Markov) Model abstract
Landsat data for 1992, 2000, and 2013 land use changes for Ekbatan Dam watershed was simulated through CA-Markov” model. Two classification methods were initially used, viz. the maximum likelihood (MAL) and support vector machine (SVM). Although both methods showed high overall accuracy and Kappa coefficient, visually MAL failed in separating land uses, particularly built up and dry lands.Therefore, the results of SVM were used for Markov Chain Model and “CA” filter to predict land use map for 2034. In order to assess the ability of “CA Markov” model, simulation for 2013was performed. Results showed that simulated map was in agreement with the existing map for2013 at 84% level. The land use map prediction showed that built up area of 0.8298 km2 in 2013 will increase to 1.02113 km2 in 2034. In contrast, irrigated agriculture will decrease from 17.33 km2 to 17.16 km2, and rain fed agriculture from 45.07 km2 to 44.49 km2. Results of this research proved the application of “CA Markov” model in simulating the land use changes.
Land Use Change Prediction using a Hybrid (CA-Markov) Model Keywords:
Land Use Change Prediction using a Hybrid (CA-Markov) Model authors
Alireza Ildoromi
Associate Professor, Department of Range and Watershed Management, Malayer University, Malayer, Iran
Mahtab Safari Shad
Ph.D. Student, Department Watershed Management, Faculty of Natural Resources, Sari University of Agriculture and Natural Resource, Sari, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :