A Transformer-Based Approach with Contextual Position Encoding for Robust Persian Text Recognition in the wild
Publish Year: 1403
Type: Journal paper
Language: English
View: 111
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_JADM-12-3_010
Index date: 31 December 2024
A Transformer-Based Approach with Contextual Position Encoding for Robust Persian Text Recognition in the wild abstract
The Persian language presents unique challenges for scene text recognition due to its distinctive script. Despite advancements in AI, recognition in non-Latin scripts like Persian still faces difficulties. In this paper, we extend the vanilla transformer architecture to recognize arbitrary shapes of Persian text instances. We apply Contextual Position Encoding (CPE) to the baseline transformer architecture to improve the recognition of Persian scripts in wild images, especially for oriented and spaced characters. The CPE utilizes position information to generate contrastive data pairs that help better in capturing Persian characters written in a different direction. Moreover, we evaluate several state-of-the-art deep-learning models using our prepared challenging Persian scene text recognition dataset and develop a transformer-based architecture to enhance recognition accuracy. Our proposed scene text recognition architecture achieves superior word recognition accuracy compared to existing methods on a real-world Persian text dataset.
A Transformer-Based Approach with Contextual Position Encoding for Robust Persian Text Recognition in the wild Keywords:
A Transformer-Based Approach with Contextual Position Encoding for Robust Persian Text Recognition in the wild authors
Zobeir Raisi
Electrical Engineering Department, Chabahar Maritime University, Chabahar, Iran.
Vali Mohammad Nazarzehi
Electrical Engineering Department, Chabahar Maritime University, Chabahar, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :