سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Permeability Prediction from Log Data using Machine Learning Methods

Publish Year: 1403
Type: Journal paper
Language: Persian
View: 51

This Paper With 17 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_IRPGA-7-3_003

Index date: 31 December 2024

Permeability Prediction from Log Data using Machine Learning Methods abstract

In this paper, models for permeability prediction of oil reservoirs using a machine learning approach and petrophysical data are compared. Various machine learning methods, including multi-resolution graph-based clustering, conventional artificial neural networks and Extreme Learning Machines are employed to have a comprehensive comparison. RCAL data from one of Iran's oil reservoirs was used to develop and test the machine-learning approach. The results of the machine learning models employed in this paper are compared with relevant real petrophysical data and well evaluations. Seven input models of two different wells of this reservoir were considered for permeability estimation. The input logs data of models include Resistivity (RT), Effective Porosity (PHIE), Density log (RHOB), Sonic log (DT) and Compensated neutron porosity log (NPHI) logs data. The correlation coefficient and the root mean square error between the prediction data and core data in the ELM method were obtained as ۰.۹۴ and ۰.۰۶, respectively. In the MRGC method, the correlation coefficient and the root mean square error between the prediction data and core data were obtained as ۰.۹۸ and ۰.۰۹, respectively. The obtained results in this paper show that the mentioned models are well able to estimate permeability values in all parts of the studied formation and it can be concluded that the clustering method based on MRGC has more correlation with the core data, and Instead, the ELM method has the least amount of error in permeability prediction. According to the error values, ELM can be recommended as the final selected algorithm for permeability prediction in this study.

Permeability Prediction from Log Data using Machine Learning Methods authors

محمد علی داوری

دانشگاه بین المللی امام خمینی

سعیده سنماری

دانشگاه بین المللی امام خمینی

اندیشه علیمرادی

دانشگاه بین المللی امام خمینی

سید جواد صفوی

ارشد پتروفیزیست، شرکت پارس پترو زاگرس

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Alimoradi, A., Hajkarimian, H., Hemati Ahooi, H., and Salsabili, M., ...
Mohaghegh, S., (۲۰۰۰), “Virtual-Intelligence Applications in Petroleum Engineering: Part ۱—Artificial ...
Mohaghegh, S. D., (۲۰۰۰), “Virtual Intelligence and Its Applications in ...
Huang, Z., and Williamson, M. A., (۱۹۹۷), “Determination of Porosity ...
Hampson, D. P., Schuelke, J. S., and Quirein, J. A., ...
Russell, B. H., (۲۰۰۴), "The Application of Multivariate Statistics and ...
Nooruddin, H. A., Anifowose, F., and Abdulraheem, A., (۲۰۱۳), “Applying ...
Al-Anazi, A. F., and Gates, I. D., (۲۰۱۲), “Support Vector ...
Singh, S., Kanli, A. I., and Sevgen, S., (۲۰۱۶), “A ...
Huang, G.-B., Zhu, Q.-Y., and Siew, C.-K., (۲۰۰۴), “Extreme Learning ...
Saffarzadeh, S., and Shadizadeh, S. R., (۲۰۱۲), “Reservoir Rock Permeability ...
Olatunji, S. O., Selamat, A., and Raheem, A. A. A., ...
Xiao, D., Li, B., and Mao, Y., (۲۰۱۷), “A Multiple ...
Adeniran, A. A., Adebayo, A. R., Salami, H. O., Yahaya, ...
Zhang, G., Wang, Z., Mohaghegh, S., Lin, C., Sun, Y., ...
Sarkheil, H. (۲۰۲۳) “Combining Voronoi Triangulation Discrete Fracture Network (DFN) ...
Sarkheil, H., Hassani, H., & Alinia, F., (۲۰۲۱) “Fractured reservoir ...
Rolon, L., Mohaghegh, S. D., Ameri, S., Gaskari, R., and ...
Tofighi, F., Armani, P., Chehrazi, A., and Alimoradi, A., (۲۰۲۱), ...
Vemuri, V. R., and Rogers, R. D., (۱۹۹۴), “Artificial Neural ...
Ye, S.-J., and Rabiller, P., (۲۰۰۰), “A New Tool for ...
Huang, G.-B., Zhu, Q.-Y., Mao, K. Z., Siew, C.-K., Saratchandran, ...
Huang, G.-B., Zhu, Q.-Y., and Siew, C.-K., (۲۰۰۶), “Extreme Learning ...
Mantoro, T., Olowolayemo, A., and Olatunji, S. O., (۲۰۱۰), “Mobile ...
Fathi, M., Alimoradi, A., and Hemati Ahooi, H. R., (۲۰۲۱), ...
Sarkheil, H., Hassani, H., & Alinia, F., (۲۰۱۳) “Fractures distribution ...
Jahan mohammadi, H., Mosaddeg, H., Azizzadeh, M., Sarkheil, H., Mohammadnia, ...
نمایش کامل مراجع