سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Impact of Carrier Relaxation Time on the Performance of Quantum Dot Laser with Planar Cavities ‎Using ‎Artificial ‎Neural ‎Networks

Publish Year: 1403
Type: Journal paper
Language: English
View: 56

This Paper With 17 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_COAM-9-2_005

Index date: 31 December 2024

Impact of Carrier Relaxation Time on the Performance of Quantum Dot Laser with Planar Cavities ‎Using ‎Artificial ‎Neural ‎Networks abstract

This study presents a model of ‎a quantum dot laser with a planar cavity, employing numerical methods and artificial neural networks for simulation purposes. The investigation focuses on the influence of critical parameters, including the injection current into the active layer of the quantum dot laser and the carrier relaxation time to a lower energy state level. The model delves into the intricate carrier and photon dynamics within the laser, solving a system of coupled equations that describe these interactions. The fourth-order Runge-Kutta method is utilized to solve these equations numerically. ‎‎The results indicate that increased pumping power enhances the stable power levels and the peak power output of the laser. Additionally, analysis of the power versus intensity of current (P-I) characteristic curve‎ ‎ reveals that a longer carrier relaxation time to a lower energy state leads to a higher threshold current and a reduction in the quantum efficiency of the device‎. ‎The study also examines the laser switch-on time against the injection current. Finally, the deterioration in the quality of quantum dots and quantum wells is scrutinized‎. To gain deeper insights into the effect of increased pumping current on laser switch-on time‎, ‎the study complements numerical findings with the application of artificial neural networks, yielding significant results.

Impact of Carrier Relaxation Time on the Performance of Quantum Dot Laser with Planar Cavities ‎Using ‎Artificial ‎Neural ‎Networks Keywords:

Impact of Carrier Relaxation Time on the Performance of Quantum Dot Laser with Planar Cavities ‎Using ‎Artificial ‎Neural ‎Networks authors

Seyed Mohsen Izadyar

Department of Physics‎, ‎Faculty of Basic Sciences‎, ‎Shahid Sattari University‎, ‎Tehran‎, ‎Iran.

Mohammad Eshaghnezhad

Department of Mathematics‎, ‎Faculty of Basic Sciences‎, ‎Shahid Sattari University‎, ‎Tehran‎, ‎Iran.

Hossein Davoodi Yeganeh

Quantum Research Center‎, ‎Shahid Sattari University‎, ‎Tehran‎, ‎Iran‎.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Asada, M., Miyamoto, Y., Suematsu, Y. (۱۹۸۶). “Gain and the ...
Azam, N., Najabat Ali, M., Javaid Khan, T. (۲۰۲۱). “Carbon ...
Daraei, A., Izadyar, S.M., Chenarani, N. (۲۰۱۳). “Simulation and analysis ...
Effati, S., Mansoori, A., Eshaghnezhad, M. (۲۰۲۱). “Linear quadratic optimal ...
Eshaghnezhad, M., Rahbarnia, F., Effati, S., Mansoori, A. (۲۰۱۹). “An ...
Facure, M., Schneider, R., Mercante, L., Correa, D. (۲۰۲۰). “A ...
Fathpour, S., Zetian Mi, Bhattacharya, P. (۲۰۰۵). “High-speed quantum dot ...
Filali, S., Pirot, F., Miossec, P. (۲۰۲۰). “Biological applications and ...
García de Arquer, F.P., Talapin, D.V., Klimov, V.I., Arakawa, Y., ...
Ghaffarkhah, A., Hosseini, E., Kamkar, M., Sehat, A.A., Dordanihaghighi, S., ...
Ghosh, D., Sarkar, K., Devi, P., Kim, K. H., Kumar, ...
Ghosh, S., Bhattacharya, P., Stoner, E., Singh, J., Jiang, H., ...
“Temperature-dependent measurement of Auger recombination in self-organized In ۰.۴ Ga ...
Gupta, R.R., Ranga, V. (۲۰۲۱). “Comparative study of different reduced ...
Gidwani, B., Sahu, V., Shukla, S.S., Pandey, R., Joshi, V., ...
Izadyar, S.M., Razaghi, M., Hassanzadeh, A. (۲۰۱۷). “Quantum dot semiconductor ...
Izadyar, S.M., Razaghi, M., Hassanzadeh, A. (۲۰۱۸). “Quantum dot semiconductor ...
Izadyar, S.M., Razaghi, M., Hassanzadeh, A. (۲۰۲۰). “Quantum dot semiconductor ...
Jennings, C., Ma, X., Wickramasinghe, T., Doty, M., Scheibner, M., ...
Jung, H., Ahn, N., Klimov, V.I. (۲۰۲۱). “Prospects and challenges ...
Kargozar, S., Hoseini, S.J., Brouki Milan, P., Hooshmand, S., Kim, ...
Koley, S., Cui, J., Panfil, Y.E., Banin, U. (۲۰۲۱). “Coupled ...
Ledentsov, N.N., Ustinov, V.M., Egorov, A.Y., Zhukov, A.E., Maksimov, M.V., ...
Lee, I.H., Rao, V., Martin, R.M., Leburton, J.P. (۲۰۲۱). “Shell ...
Liu, L., Najar, A., Wang, K., Du, M., Liu, S. ...
Liu, Z., Hantschmann, C., Tang, M., Lu, Y., Park, J.S., ...
Liu, Z., Lin, C.H., Hyun, B.R., Sher, C.W., Lv, Z., ...
Liu, H.Y., Sellers, I.R., Badcock, T.J., Mowbray, D.J., Skolnick, M.S., ...
Lv, Z.R., Zhang, Z.K., Yang, X.G., Yang, T. (۲۰۱۸). “Improved ...
Lv, S.F., Montrosset, I., Gioannini, M., Song, S.Z., Ma, J.W. ...
Lüdge, K., Bormann, M.J., Malić, E., Hövel, P., Kuntz, M., ...
Mansoori, A., Effati, S. (۲۰۱۹). “An efficient neurodynamic model to ...
Molaei, M.J. (۲۰۲۰). “Principles, mechanisms, and application of carbon quantum ...
Ozaki, N., Hayashi, Y., Ohkouchi, S., Ohsato, H., Watanabe, E., ...
Rakhlin, M., Klimko, G., Sorokin, S., Kulagina, M., Zadiranov, Y., ...
Razaghi, M., Izadyar, S.M., Madanifar, K.A. (۲۰۱۷). “Investigation of amplified ...
Roh, J., Park, Y.S., Lim, J. Klimov, V.I. (۲۰۲۰). “Optically ...
Selopal, G.S., Zhao, H., Wang, Z.M., Rosei, F. (۲۰۲۰). “Core/shell ...
Shojaeifard, A., Amroudi, A.N., Mansoori, A., Erfanian, M. (۲۰۱۹). “Projection ...
Shu, Y., Lin, X., Qin, H., Hu, Z., Jin, Y., ...
Sugawara, M. (۱۹۹۸). “Effect of carrier dynamics on quantum-dot laser ...
Sugawara, M., Mukai, K., Nakata, Y., Ishikawa, H., Sakamoto, A. ...
Urayama, J., Norris, T.B., Singh, J., Bhattacharya, P. (۲۰۰۱). “Observation ...
Wan, Y., Norman, J., Liu, S., Liu, A., Bowers, J.E. ...
Wang, J., Wang, L., Yu, S., Ding, T., Xiang, D., ...
نمایش کامل مراجع