On Constraint Qualifications and Optimality Conditions in Nonsmooth Semi-infinite Optimization
Publish Year: 1403
Type: Journal paper
Language: English
View: 47
This Paper With 14 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_COAM-9-2_004
Index date: 31 December 2024
On Constraint Qualifications and Optimality Conditions in Nonsmooth Semi-infinite Optimization abstract
The primary objective of this paper is to enhance several well-known geometric constraint qualifications and necessary optimality conditions for nonsmooth semi-infinite optimization problems (SIPs). We focus on defining novel algebraic Mangasarian-Fromovitz type constraint qualifications, and on presenting two Karush-Kuhn-Tucker type necessary optimality conditions for nonsmooth SIPs defined by locally Lipschitz functions. Then, by employing a new type of generalized invex functions, we present sufficient conditions for the optimality of a feasible point of the considered problems. It is noteworthy that the new class of invex functions we considered encompasses several classes of invex functions introduced previously. Our results are based on the Michel-Penot subdifferential.
On Constraint Qualifications and Optimality Conditions in Nonsmooth Semi-infinite Optimization Keywords:
On Constraint Qualifications and Optimality Conditions in Nonsmooth Semi-infinite Optimization authors
Atefeh Hassani Bafrani
Department of Mathematics, Payame Noor University (PNU), P.O. Box ۱۹۳۹۵-۴۶۹۷, Tehran, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :