سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

A Sub-Ordinary Approach to Achieve Near-Exact Solutions for a Class of Optimal Control Problems

Publish Year: 1403
Type: Journal paper
Language: English
View: 59

This Paper With 19 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_COAM-9-2_001

Index date: 31 December 2024

A Sub-Ordinary Approach to Achieve Near-Exact Solutions for a Class of Optimal Control Problems abstract

This paper explores the advantages of Sub-ODE strategy in deriving near-exact‎ ‎solutions for a class of linear and nonlinear optimal control‎ ‎problems (OCPs) that can be transformed into nonlinear‎ ‎partial differential equations (PDEs). Recognizing that converting an OCP into differential‎ ‎equations typically increases the complexity by adding constraints‎, ‎we adopt the‎ ‎Sub-ODE method‎, ‎as a direct method‎, thereby negating the need for such transformations to extract near exact solutions‎. A key advantage of this method is its ability to produce control and state functions that closely resemble the explicit forms of optimal control and state functions. ‎ We present results that demonstrate the efficacy of this method through several numerical examples, comparing its performance to various other approaches, thereby illustrating its capability to achieve near-exact solutions.

A Sub-Ordinary Approach to Achieve Near-Exact Solutions for a Class of Optimal Control Problems Keywords:

Optimal control problem‎ , ‎Subsidiary ordinary‎ ‎differential equation method‎ , ‎Parametrization

A Sub-Ordinary Approach to Achieve Near-Exact Solutions for a Class of Optimal Control Problems authors

Akbar Hashemi Borzabadi

Department of Applied Mathematics‎, ‎University of Science and Technology of Mazandaran‎, ‎Behshahr‎, ‎Iran.

Mohammad Gholami Baladezaei

Department of Mathematics‎, ‎Damghan Branch‎, ‎Islamic Azad‎ ‎University‎, ‎Damghan‎, ‎Iran.

Morteza Ghachpazan

Department of Applied Mathematics‎, ‎School of Mathematical‎ ‎Sciences‎, ‎Ferdowsi University of Mashhad‎, ‎Mashhad‎, ‎Iran‎.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Askenazy, P. (۲۰۰۳). “Symmetry and optimal control in economics”, Journal ...
EdrisiTabriz, Y., Lakestani, M.(۲۰۱۵).“ Direct solution of nonlinear constrained quadratic ...
El-Gindy, T.M., El-Hawary, H.M., Salim, M.S., El-Kady, M.(۱۹۹۵).“ A Chebyshev ...
Elnagar, G.N. (۱۹۹۷). “State-control spectral Chebyshev parameterization for linearly constrained ...
Gachpazan, M., Mortazavi, M. (۲۰۱۵). “Traveling wave solutions for some ...
Gholami Baladezaei, M., Gachpazan, M., Borzabadi, A.H. (۲۰۲۰). “Extraction of ...
Highfill, J., McAsey, M.(۲۰۰۱).“An application of optimal control to the ...
Kafash, B., Delavarkhalafi, A., Karbassi, S.M. (۲۰۱۲). “Application of Chebyshev ...
Kim, H., Sakthivel, R. (۲۰۱۰). “Travelling wave solutions for time-delayed ...
Li, L.X., Li, E.Q., Wang, M.L. (۲۰۱۰). “The (G′/G, ۱/G)-expansion ...
Mehne, H.H., Borzabadi, A.H. (۲۰۰۶). “A numerical method for solving ...
Rafiei, Z., Kafash, B., Karbassi S.M. (۲۰۱۷). “A computational method ...
Salam, A., Sharif Uddin, M.D., Dey, P. (۲۰۱۵). “Generalized Bernoulli ...
Salama,A.A.(۲۰۰۶).“Numerical methods based on extended one-step methods for solving optimal ...
Seierstad, A., Sydsaeter, K. (۱۹۸۶). “Optimal control theory with economic ...
Skandari, M.H.N., Tohidi, E. (۲۰۱۱). “Numerical solution of a class ...
Solaymani Fard, O., Borzabadi, A.H. (۲۰۰۷). “Optimal control problem, quasi ...
Tohidi, E., Saberi, Nik, H. (۲۰۱۵). “A Bessel collocation method ...
Tohidi, E., Navid Samadi, O.R., Farahi, M.H. (۲۰۱۱). “Legendre approximation ...
Wang, M., Li, X., Zhang, J. (۲۰۰۸). “The (G′/G)-expansion method ...
Yokus, A. (۲۰۱۱). “Solutions of some nonlinear partial differential equations ...
Zhang, S., Tong, J.L., Wang, W. (۲۰۰۸). “A generalized (G′/G)-expansion ...
Zheng, B.(۲۰۱۱).“A new Bernoulli sub-ODE method for constructing traveling wave ...
Zheng, B. (۲۰۱۲). “Application of A generalized Bernoulli sub-ODE method ...
نمایش کامل مراجع