Nonlinear Analysis of Surface EMG Signal to Assess Muscle Fatigue during Isometric Contraction
Publish place: 11th Intelligent Systems Conference
Publish Year: 1391
نوع سند: مقاله کنفرانسی
زبان: English
View: 1,111
This Paper With 7 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICS11_289
تاریخ نمایه سازی: 14 مهر 1392
Abstract:
The objective of the present study was to investigate the possible relationship between nonlinear parameters extracted from surface EMG (sEMG) signals and muscle force and fatigue. Our hypothesis was that changes in motor unit recruitment during muscle contraction and fatigue, affect sEMG distribution and the intractions in muscle. Thus, five features based on geometric aspects of time series trajectory and higher order statistics were extracted from sEMG signal, recorded from biceps brachii muscle of a healthy female volunteer during rest, sustained (fatiguing) 50% MVC, 100% MVC and recovery. Results obtained from correlation dimension (CD) and linearity test (sl) analyses showed that the values of these parameters are higher during rest and recovery states, indicating higher chaotic behaviour, while they decreased during MVCs. However, when fatigue occurred, these parameters increased slightly, again. On the other hand, test of non-Gaussianity based on negentropy showed the reverse pattern of CD and sl. Skweness and kurtosis values, which are the quantitative descriptors of probability densities, were positive and negative, respectively during rest and recovery, while this pattern reversed for MVCs
Keywords:
Authors
Fariba Biyouki
Dept. of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Iran
Saeed Rahati
Dept. of Electrical Engineering, Mashhad Branch, Islamic Azad University, Iran
Katri Laimi
Dept. of Physical Medicine and Rehabilitation, Turku University Hospital, Turku, Finland
Ali Shoeibi
Assistant Professor of Neurology, Mashhad University of Medical Sciences, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :