سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

The application of an improved artificial neural network model for prediction of Cu and Au concentration in the porphyry copper-epithermal gold deposits, case study: Masjed Daghi, NW Iran

Publish Year: 1403
Type: Journal paper
Language: English
View: 79

This Paper With 13 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_IJMGE-58-4_001

Index date: 20 January 2025

The application of an improved artificial neural network model for prediction of Cu and Au concentration in the porphyry copper-epithermal gold deposits, case study: Masjed Daghi, NW Iran abstract

Modeling of geochemical data to predict elements is done with different methods. The proposed method in this research is the use of an intelligent model and pathfinder elements. In this study, drilling and sampling were done in two porphyry and epithermal mineralization of the Masjed Daghi porphyry copper deposit, and we used the data from the porphyry mineralization to predict copper and the data from the epithermal mineralization to predict gold. By using geochemical data and performing correlation and sensitivity analyses, copper and gold pathfinder elements (Pb, Zn, Ag, Mo, As) were determined. Then, using the data of pathfinder elements and an intelligent artificial neural network model, we predict the grade of gold and copper elements. The data of pathfinder elements were used as input and the grade of gold and copper elements were used as output of the model. In this research, the optimization of the artificial neural network is done using several optimization algorithms such as simulated annealing algorithm (SAA), firefly algorithm (FA), invasive weed optimization algorithm (IWO) and shuffled frog leaping algorithm (SFLA). Comparing the results showed that ANN-SAA (Combining ANN with SAA) performs better than other built models. This superiority was evident both in the porphyry and epithermal mineralization. R2 and MSE of ANN-SAA model for Cu prediction were 0.8275 and 0.0303 for training data, 0.7357 and 0.0371 for testing data respectively. Also, R2 and MSE of ANN-SAA model for Au prediction were 0.6713 and 0.0463 for training data, 0.7040 and 0.0333 for testing data respectively.

The application of an improved artificial neural network model for prediction of Cu and Au concentration in the porphyry copper-epithermal gold deposits, case study: Masjed Daghi, NW Iran Keywords:

The application of an improved artificial neural network model for prediction of Cu and Au concentration in the porphyry copper-epithermal gold deposits, case study: Masjed Daghi, NW Iran authors

Habibollah Bazdar

Department of Mining Engineering, Faculty of Engineering, Urmia University, Urmia, Iran.

Ali Imamalipour

Department of Mining Engineering, Faculty of Engineering, Urmia University, Urmia, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
. Hornik, K., M. Stinchcombe, and H. White, (۱۹۸۹). Multilayer ...
. Journel, A.G. and C.J. Huijbregts, (۱۹۷۸). Mining geostatistics, Academic ...
. Misra, D., et al., (۲۰۰۷). Evaluation of artificial neural ...
. Rendu, J. (۱۹۷۹), Kriging, logarithmic Kriging, and conditional expectation: ...
. Agterberg, F. and G. Bonham-Carter. (۱۹۹۹), Logistic regression and ...
. Porwal, A., et al., (۲۰۱۰). Weights-of-evidence and logistic regression ...
. Abedi, M., G.H. Norouzi, and N. Fathianpour, (۲۰۱۳). Fuzzy ...
. Abedi, M., S. Torabi, and G. Norouzi, (۲۰۱۳). Application ...
. Afzal, P., et al., (۲۰۲۳). Mineral Resource Classification Using ...
. Daneshvar Saein, L., et al., (۲۰۲۲). Application of an ...
. Farhadi, S., et al., (۲۰۲۲). Combination of machine learning ...
. Porwal, A., E.J.M. Carranza, and M. Hale, (۲۰۰۶). Bayesian ...
. Ziaii, M., A. Abedi, and M. Ziaei, (۲۰۰۹). Geochemical ...
. Ghavami-Riabi, R., et al., (۲۰۱۰). U-spatial statistic data modeled ...
. Mahdiyanfar, H. and M. Seyedrahimi-Niaraq, (۲۰۲۴). Application of hybrid ...
. Seyedrahimi-Niaraq, M., H. Mahdiyanfar, and A.R. Mokhtari, (۲۰۲۲). Integrating ...
. Brown, W.M., et al., (۲۰۰۰). Artificial neural networks: a ...
. Harris, D. and G. Pan, (۱۹۹۹). Mineral favorability mapping: ...
. Harris, D., et al., (۲۰۰۳). A comparative analysis of ...
. Lee, S., et al., (۲۰۱۴). A case study for ...
. Leite, E.P. and C.R. de Souza Filho, (۲۰۰۹). Artificial ...
. Leite, E.P. and C.R. de Souza Filho, (۲۰۰۹). Probabilistic ...
. Oh, H.-J. and S. Lee, (۲۰۱۰). Application of artificial ...
. Rigol-Sanchez, J., M. Chica-Olmo, and F. Abarca-Hernandez, (۲۰۰۳). Artificial ...
. Singer, D.A. and R. Kouda, (۱۹۹۶). Application of a ...
. Skabar, A. (۲۰۰۳), Mineral potential mapping using feed-forward neural ...
. Skabar, A., (۲۰۰۷). Mineral potential mapping using Bayesian learning ...
. Skabar, A.A., (۲۰۰۵). Mapping mineralization probabilities using multilayer perceptrons. ...
. Dutta, S., et al., (۲۰۱۰). Machine learning algorithms and ...
. Samanta, B., S. Bandopadhyay, and R. Ganguli, (۲۰۰۲). Data ...
. Samanta, B., S. Bandopadhyay, and R. Ganguli, (۲۰۰۶). Comparative ...
. Samanta, B., et al., (۲۰۰۴). Sparse data division using ...
. Abedi, M., G.H. Norouzi, and A. Bahroudi, (۲۰۱۲). Support ...
. Li, X., Y. Xie, and Q. Guo. (۲۰۱۰), A ...
. Li, X.l., et al., (۲۰۱۳). Hybrid self-adaptive learning based ...
. Zuo, R. and E.J.M. Carranza, (۲۰۱۱). Support vector machine: ...
. Afzal, P., et al., (۲۰۲۲). Geochemical anomaly detection in ...
. Brown, W., D. Groves, and T. Gedeon, (۲۰۰۳). Use ...
. Porwal, A., E. Carranza, and M. Hale, (۲۰۰۴). A ...
. Simpson, P.K., (۱۹۹۱). Artificial neural systems: foundations, paradigms, applications, ...
. Toğan, V., (۲۰۱۲). Design of planar steel frames using ...
. Toğan, V., (۲۰۱۳). Design of pin jointed structures using ...
. Uzlu, E., et al., (۲۰۱۴). Estimates of energy consumption ...
. Price, R.H. and S.J. Bauer, (۱۹۸۵), Analysis of the ...
. Hajihassani, M., et al., (۲۰۱۴). Prediction of airblast-overpressure induced ...
. Aghazadeh, M., et al., (۲۰۱۵). Temporal–spatial distribution and tectonic ...
. Hassanpour, S., (۲۰۱۳). The alteration, mineralogy and geochronology (SHRIMP ...
. Jamali, H., et al., (۲۰۱۰). Metallogeny and tectonic evolution ...
. Maghsoudi, A., et al., (۲۰۱۴). Porphyry Cu–Au mineralization in ...
. Imamalipour, A. and R. Mousavi, (۲۰۱۸). Vertical geochemical zonation ...
. Ebrahimi, S., et al., (۲۰۱۷). Geology, mineralogy and ore ...
. Imamalipour, A., et al., (۲۰۱۱). Geological, Alteration and magnetic ...
. Jorjani, E., S.C. Chelgani, and S. Mesroghli, (۲۰۰۸). Application ...
. Monjezi, M. and H. Dehghani, (۲۰۰۸). Evaluation of effect ...
. Specht, D.F., (۱۹۹۱). A general regression neural network. IEEE ...
. Acharya, C., et al., (۲۰۰۶). Prediction of sulphur removal ...
. Hagan, M.T., H.B. Demuth, and M.H. Beale, (۱۹۹۶). Neural ...
. Basheer, I.A. and M. Hajmeer, (۲۰۰۰). Artificial neural networks: ...
. Assad, A. and K. Deep, (۲۰۱۸). A hybrid harmony ...
. Černý, V., (۱۹۸۵). Thermodynamical approach to the traveling salesman ...
. Kirkpatrick, S., C.D. Gelatt Jr, and M.P. Vecchi, (۱۹۸۳). ...
. Metropolis, N., et al., (۱۹۵۳). Equation of state calculations ...
. Xinchao, Z., (۲۰۱۱). Simulated annealing algorithm with adaptive neighborhood. ...
. García-Martínez, C., M. Lozano, and F.J. Rodríguez-Díaz, (۲۰۱۲). A ...
. Fattahi, H. and H. Bazdar, (۲۰۱۷). Applying improved artificial ...
. Ingber, L., (۱۹۹۳). Simulated annealing: Practice versus theory. Mathematical ...
. Yang, X.-S., (۲۰۱۰). Nature-inspired metaheuristic algorithms, Luniver press ...
. Mehrabian, A.R. and C. Lucas, (۲۰۰۶). A novel numerical ...
. Zhou, Y., et al., (۲۰۱۵). A discrete invasive weed ...
. Maaroof, B.B., et al., (۲۰۲۲). Current studies and applications ...
. Elbeltagi, E., T. Hegazy, and D. Grierson, (۲۰۰۷). A ...
. Chicco, D., M.J. Warrens, and G. Jurman, (۲۰۲۱). The ...
نمایش کامل مراجع