سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Sentiment Analysis of Persian Sentences using Efficient Deep Learning in Fiction

Publish Year: 1403
Type: Journal paper
Language: English
View: 68

This Paper With 20 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JCSE-11-1_006

Index date: 21 January 2025

Sentiment Analysis of Persian Sentences using Efficient Deep Learning in Fiction abstract

Text analysis has been one of the issues in recent research to identify users' sentiments. Most studies have identified sentiments' positive and negative polarity in Persian, and limited research has been done on analyzing emotions in Persian sentences by covering the primary emotional states. In this study, first, a dataset of emotional sentences was prepared to label six basic emotional states, JAMFA. This dataset contains 2350 sentences and (31222 words). This paper presents two models, efficient BERT-BiLSTM(EBB) and XLM-R Catboost(XLM-RC), that enhance the performance of the Persian text emotion classification. This study has the advantages of human intelligence methods and statistical approaches to achieve better accuracy in sentence labeling. The evaluation indicates the accuracy of labeling is 92%, and the reliability of the dataset based on the type of emotions is 88%. The results show that the models at best achieved 86\% accuracy in basic emotion classification and an 81% F-score in binary classification.

Sentiment Analysis of Persian Sentences using Efficient Deep Learning in Fiction Keywords:

Sentiment Analysis of Persian Sentences using Efficient Deep Learning in Fiction authors

Azam Bastanfard

Department of Computer Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran.

Azadeh Khodaei

Department of Computer Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran.

Hadi Saboohi

Department of Computer Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran.

Hossein Aligholizadeh

Department of Persian Literature and the English Language, General Teaching Center, K. N. Toosi University of Technology, Tehran, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Jain, Tejashri Inadarchand and Nemade, Dipak. Recognizing contextual polarity in ...
Miller, George A. WordNet: a lexical database for English. Communications of ...
Pang, Bo and Lee, Lillian. Seeing stars: Exploiting class relationships ...
Medhat, Walaa and Hassan, Ahmed and Korashy, Hoda. Sentiment analysis ...
Lin, Min and Chen, Qiang and Yan, Shuicheng. Network in ...
نمایش کامل مراجع