p-groups with a small number of character degrees and their normal subgroups
Publish place: International Journal of Group Theory، Vol: 14، Issue: 3
Publish Year: 1404
Type: Journal paper
Language: English
View: 53
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_THEGR-14-3_006
Index date: 25 January 2025
p-groups with a small number of character degrees and their normal subgroups abstract
If G be a finite p-group and \chi is a non-linear irreducible character of G, then \chi(1)\leq |G/Z(G)|^{\frac{1}{2}}. In \cite{fernandez2001groups}, Fern\'{a}ndez-Alcober and Moret\'{o} obtained the relation between the character degree set of a finite p-group G and its normal subgroups depending on whether |G/Z(G)| is a square or not. In this paper we investigate the finite p-group G where for any normal subgroup N of G with G'\not \leq N either N\leq Z(G) or |NZ(G)/Z(G)|\leq p and obtain some alternate characterizations of such groups. We find that if G is a finite p-group with |G/Z(G)|=p^{2n+1} and G satisfies the condition that for any normal subgroup N of G either G'\not \leq N or N\leq Z(G), then cd(G)=\{1, p^{n}\}. We also find that if G is a finite p-group with nilpotency class not equal to 3 and |G/Z(G)|=p^{2n} and G satisfies the condition that for any normal subgroup N of G either G'\not \leq N or |NZ(G)/Z(G)|\leq p, then cd(G) \subseteq \{1, p^{n-1}, p^{n}\}.
p-groups with a small number of character degrees and their normal subgroups Keywords:
p-groups with a small number of character degrees and their normal subgroups authors
Nabajit Talukdar
Department of Mathematics, Cotton University, Guwahati, India
Kukil Rajkhowa
Department of Mathematics, Cotton University, Guwahati, India
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :