سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

ارزش گذاری اوراق اختیار معامله بر اساس شبکه عصبی ماژولار

Publish Year: 1403
Type: Journal paper
Language: Persian
View: 62

This Paper With 36 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JFR-26-4_008

Index date: 26 January 2025

ارزش گذاری اوراق اختیار معامله بر اساس شبکه عصبی ماژولار abstract

هدف: پوشش ریسک ناشی از نوسان قیمت ها با استفاده از اوراق اختیارمعامله، به ارزش گذاری دقیق و مناسب برای اوراق اختیار معامله وابسته است. به همین دلیل، هدف از این پژوهش، ارزش گذاری اوراق اختیارمعامله در بورس اوراق بهادار تهران با شبکه های عصبی ماژولار و مقایسه عملکرد هر یک از این شبکه های عصبی ماژولار با معروف ترین مدل ارزش گذاری اوراق اختیارمعامله، یعنی مدل بلک، شولز و مرتون و مدل شبکه عصبی پرسپترون چندلایه است. روش: برای این پژوهش، از داده های اختیارمعامله خرید که از ابتدای سال ۱۳۹۷ تا انتهای سال ۱۴۰۱، در بورس اوراق بهادار تهران معامله شده اند، استفاده شده است. در ابتدا پس از حذف داده های پرت، ۸۰ درصد داده ها، به عنوان داده های آموزش و ۲۰ درصد باقی مانده، به عنوان داده های آزمون در نظر گرفته شدند. برای امکان مقایسه بین نتایج به دست آمده از مدل های مختلف، در طول پژوهش این دو بخش از داده ها ثابت بودند. در این پژوهش با استفاده از معیارهای آماری MSPE، RMSPE و MAPE، قیمت نظری به دست آمده از هر مدل با قیمت های معامله شده در بورس اوراق بهادار تهران مقایسه شد. برای محاسبه خطای پیش بینی در مدل بلک، شولز و مرتون، ابتدا با استفاده از فرمول قیمت گذاری آن، قیمت تئوریک اوراق اختیار معامله به دست آمد؛ سپس قیمت های تئوریک به دست آمده از رابطه بلک، شولز و مرتون با قیمت های بازاری آن ها مقایسه شد. در مدل های شبکه عصبی نیز، ابتدا قیمت اوراق اختیار معامله با استفاده از پایتون و الگوریتم های یادگیری ماشین آن پیش بینی شد و در نهایت، قیمت پیش بینی شده توسط مدل ها و قیمت بازاری همان اختیار معامله مقایسه شد. در پایان، برای بررسی اختلاف معنادار هر مدل با سایر مدل ها، از آزمون مقایسه زوجی میانگین درصد خطاها استفاده شد. یافته ها: این پژوهش نشان داد که از منظر معیار RMSPE مدل شبکه های عصبی توسعه یافته با نوسان های ضمنی، در ارزش گذاری اوراق اختیارمعامله خرید در تمام موقعیت های پولی و دوره های زمانی نسبت به سایر مدل های بررسی شده، کمترین میزان خطا و بهترین عملکرد را داشته است؛ با این حال اندکی عملکرد مدل شبکه عصبی پرسپترون چندلایه توسعه یافته با نوسان های ضمنی، بهتر از حالت ماژولار آن بوده است. پس از آن، به ترتیب مدل شبکه های عصبی توسعه یافته با نوسان های تاریخی، مدل شبکه های عصبی با داده های مجزا، مدل بلک، شولز و مرتون و مدل شبکه عصبی ماژولار پیشنهادی گرادویویچ، گنجای و کوکولج (۲۰۰۹) بیشترین دقت را داشته اند. از منظر معیار MAPE نیز، همچنان مدل های توسعه یافته با نوسان های ضمنی بهترین عملکرد را داشته اند؛ ولی در تمام مدل های شبکه عصبی، عملکرد شبکه عصبی پرسپترون چندلایه نسبت به حالت ماژولار بهتر بوده است. نتیجه گیری: مدل های شبکه عصبی ماژولار، نسبت به مدل بلک، شولز و مرتون، می توانند عملکرد بهتری داشته باشند. نوسان های ضمنی می تواند سبب بهبود عملکرد شبکه های عصبی در ارزش گذاری اوراق اختیارمعامله شود. از طرفی از منظر معیار RMSPE در مدل های شبکه عصبی توسعه یافته با نوسان های تاریخی، شبکه عصبی ماژولار عملکرد بهتری نسبت به شبکه عصبی پرسپترون چندلایه خواهد داشت؛ ولی در مدل های شبکه عصبی توسعه یافته با نوسان های ضمنی، شبکه عصبی ماژولار نمی تواند عملکرد بهتری نسبت به شبکه عصبی پرسپترون چندلایه به ثبت برساند. به طور کلی شبکه های عصبی توسعه یافته با نوسان های ضمنی، چه در حالت ماژولار و چه در حالت پرسپترون چندلایه، در دوره های زمانی بلندمدت و همچنین در موقعیت های پولی ITM بهترین عملکرد را داشته اند.

ارزش گذاری اوراق اختیار معامله بر اساس شبکه عصبی ماژولار Keywords:

ارزش گذاری اوراق اختیار معامله بر اساس شبکه عصبی ماژولار authors

مسلم پیمانی فروشانی

دانشیار، گروه مالی و بانکداری، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی، تهران، ایران.

محمد علی دهقان دهنوی

استادیار، گروه مالی و بانکداری، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی، تهران، ایران.

میلاد کوه کن

کارشناسی ارشد، گروه مهندسی مالی و مدیریت ریسک، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی، تهران، ایران.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
آذر، عادل و کریمی، سیروس (۱۳۸۸). پیش بینی بازده سهام ...
آسیما، مهدی و علی عباس زاده اصل، امیر (۱۳۹۸). ارائه ...
ابوالی، مهدی؛ خلیلی عراقی، مریم؛ حسن آبادی، حسن و یعقوب ...
امیری، مهدیه (۱۳۹۹). قیمت گذاری قراردادهای اختیارمعامله با روش های ...
پیمانی فروشانی، مسلم و هوشنگی، زهره (۱۳۹۶). تخمین و مقایسه ...
جهانگیری، اسحق (۱۳۹۷). قیمت گذاری مشتقات مالی با استفاده از ...
رمضانی، علی (۱۳۹۸). قیمت گذاری مشتقات مالی با استفاده از ...
زیادی، حسین؛ صلواتی، عرفان و لطفی هروی، محمد مهدی (۱۴۰۲). ...
سعدایی جهرمی، سپیده (۱۴۰۱). ارزش گذاری اوراق اختیار معامله با ...
سمیعی ماچیانی، رقیه (۱۳۹۷). قیمت گذاری اختیار معامله تحت مدل ...
قندهاری، مریم (۱۳۹۱). پیش بینی قیمت اختیار معاملات با استفاده ...
کاشان پور، رضا (۱۳۹۲). قیمت گذاری اختیار اروپایی در مدل ...
کیمیاگری، علی محمد؛ حاجی زاده، احسان؛ دستخوان، حسین و رمضانی، ...
مردم خواه، رقیه (۱۴۰۱). قیمت گذاری اختیار معاملات با استفاده ...
ملک محمدی، سارا (۱۳۹۹). مقایسه عملکرد مدل های ارزش گذاری ...
مهردوست، فرشید و صابر، نغمه (۱۳۹۲). قیمت گذاری اختیار معامله ...
نیسی، عبدالساده و پیمانی فروشانی، مسلم (۱۳۹۸). مدل سازی مالی ...
نیسی، عبدالساده؛ ملکی، بهروزو رضائیان، روزبه (۱۳۹۵). تخمین پارامترهای مدل ...
ReferencesAbvali, M., Khaliliaraghi, M., Hasanabadi, H. & Yaghoobnezhad, A. (۲۰۱۹). ...
Amiri, M. (۲۰۲۰). Option pricing under Black–Scholes, Boness and Binomial ...
Fadda, S. (۲۰۲۰). Pricing options with dual volatility input to ...
Géron, A. (۲۰۲۲). Hands-on machine learning with Scikit-Learn, Keras, and ...
Ghandehari, M. (۲۰۱۱). Option price Prediction using Fuzzy Neural Systems. ...
Hull, J. C. (۲۰۲۱). Option, Futures, and Other Derivatives (۱۱th ...
Hutchinson, J. M., Lo, A. W. & Poggio, T. (۱۹۹۴). ...
İltüzer, Z. (۲۰۲۲). Option pricing with neural networks vs. Black-Scholes ...
Jahangiri, I. (۲۰۱۷). Financial Derivatives Pricing using Stochastic Volatility. Sharif ...
Mardomkhah, R. (۲۰۲۲). Option pricing using machine learning. Tabriz University, ...
(in Persian)Marsland, S. (۲۰۱۵). Machine learning: an algorithmic perspective. Chapman ...
Mehrdoust, F. & Saber, N. (۲۰۱۳). The option pricing under ...
Ramezani, A. (۲۰۱۸). Financial derivatives pricing using particle swarm optimization ...
Saadaei Jahormi, S. (۲۰۲۲). Option pricing using machine learning. Allameh ...
Tatsat, H., Puri, S. & Lookabaugh, B. (۲۰۲۰). Machine Learning ...
Theobald, O. (۲۰۱۷). Machine learning for absolute beginners: a plain ...
Turing, A. M. (۲۰۱۲). Computing machinery and intelligence (۱۹۵۰). The ...
Wang, C. P., Lin, S. H., Huang, H. H. & ...
Wu, H. F. (۲۰۱۹). From constant to stochastic volatility: Black-Scholes ...
Ziyadi, H., Salavati, E. & Lotfi Heravi, M.M. (۲۰۲۳). Housing ...
نمایش کامل مراجع