سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Integration of Artificial Neural Network and Taguchi Method for Prediction and Minimisation of Thick-Walled Polypropylene Gear Shrinkage

Publish Year: 1404
Type: Journal paper
Language: English
View: 56

This Paper With 12 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_MACS-12-2_001

Index date: 27 January 2025

Integration of Artificial Neural Network and Taguchi Method for Prediction and Minimisation of Thick-Walled Polypropylene Gear Shrinkage abstract

The main aim of this research is to optimize the injection molding process parameters in order to mitigate the shrinkage of polypropylene (PP) spur gears. The methodology used integrated experimental approaches with artificial neural networks (ANN), and Taguchi methods to determine the optimal combination of injection molding parameters. The experimental data was used to create an ANN model using Matlab software that accurately predicts unseen data with a variation of less than 5%. The trained ANN model was further used to predict gear shrinkage in the context of Taguchi-based design of experiments. The investigation involved the use of Taguchi and analysis of variance techniques, determining that cooling time is the most important and relevant parameter. This is followed by packing time and melt temperature. The analysis revealed that the gears saw the least amount of shrinkage when the molding was carried out using the optimal combination of injection molding parameters.

Integration of Artificial Neural Network and Taguchi Method for Prediction and Minimisation of Thick-Walled Polypropylene Gear Shrinkage Keywords:

Integration of Artificial Neural Network and Taguchi Method for Prediction and Minimisation of Thick-Walled Polypropylene Gear Shrinkage authors

Bikram Singh Solanki

Department of Mechanical Engineering, PDPM Indian Institute of Information Technology Design & manufacturing Jabalpur Dumna Airport Road, Dumna – ۴۸۲۰۰۵, India

Devi Singh Rawat

Department of Mechanical Engineering, PDPM Indian Institute of Information Technology Design & manufacturing Jabalpur Dumna Airport Road, Dumna – ۴۸۲۰۰۵, India

Harpreet Singh

Department of Mechanical Engineering, Dr B R Ambedkar National Institute of Technology Jalandhar– ۱۴۴۰۰۸, India

Tanuja Sheorey

Department of Mechanical Engineering, PDPM Indian Institute of Information Technology Design & manufacturing Jabalpur Dumna Airport Road, Dumna – ۴۸۲۰۰۵, India

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Palaniappan S.K., Singh M.K., Rangappa S.M. and Siengchin S., ۲۰۲۴. ...
Suyambulingam I., Rangappa S.M. and Siengchin S., ۲۰۲۳. Advanced materials ...
Solanki B.S., Singh H. and Sheorey T., ۲۰۲۱. Design optimization ...
Lockner Y., Hopmann C. and Zhao W., ۲۰۲۲. Transfer learning ...
Abdul R., Guo G., Chen J.C. and Yoo J.J.W., ۲۰۲۰. ...
Hakimian E. and Sulong A.B., ۲۰۱۲. Analysis of warpage and ...
Martowibowo S.Y. and Khloeun R., ۲۰۱۹. Minimum warpage prediction in ...
Ozturk E., Taifor M., Qasim B., Yuldrim N. and Vardar ...
Saxena S., Khidiya M.S., Salvi B.L. and Saloda M.A., ۲۰۲۰. ...
Chopade D., Metkar R. and Hiwase S., ۲۰۱۶. Experimental evaluation ...
Mehat N.M., Kamaruddin S. and Othman A.R., ۲۰۱۳. Investigating the ...
Kurt M., Kaynak Y., Kamber O.S., Mutlu B., Bakir B. ...
Fung C.P. and Kang P.C., ۲۰۰۵. Multi-response optimization in friction ...
Mehat N.M., Mohd Kassim S. and Kamaruddin S., ۲۰۱۷. Investigation ...
نمایش کامل مراجع