Assessing the Quality of Hidden Proverbs Translation in the Holy Qur’ān: Human vs. Artificial Intelligence English Translations
Publish place: International Journal of Textual and Translation Analysis in Islamic Studies، Vol: 1، Issue: 4
Publish Year: 1402
Type: Journal paper
Language: English
View: 46
This Paper With 17 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_TTAIS-1-4_002
Index date: 24 February 2025
Assessing the Quality of Hidden Proverbs Translation in the Holy Qur’ān: Human vs. Artificial Intelligence English Translations abstract
Linguistic issues are important in the textual analysis of translated texts. Among the most sensitive and significant texts translated into different languages, the Holy Qur’ān stands out. The text and texture of the Qur’ān are so unique that one cannot easily understand it without prior knowledge of its linguistic and extralinguistic aspects. One of the most challenging linguistic issues in the Qur’ān is proverbs, especially hidden proverbs that carry culture-specific meanings. The translator’s role in explicating the meanings of these culture-specific items is crucial. This research aims to identify and analyze Qur’ānic hidden proverbs using a technical reference (Esmaeeli, 1986) and to assess translation quality with Na Pham’s (2005) translation quality assessment model. In this study, two translation forms, AI and human (Qarai), were compared for their treatment of Qur’ānic hidden proverbs. Data collection and analysis followed a descriptive-qualitative design. Twenty-one verses containing hidden proverbs and their translations by GPT 3.5 and Qarai were analyzed. The study results indicated that, in terms of translation quality, GPT 3.5 performed better than Qarai.
Assessing the Quality of Hidden Proverbs Translation in the Holy Qur’ān: Human vs. Artificial Intelligence English Translations Keywords:
Assessing the Quality of Hidden Proverbs Translation in the Holy Qur’ān: Human vs. Artificial Intelligence English Translations authors
Ebrahim Davoudi Sharifabad
Department of English Language, Baqir Al-Olum University, Qom, Iran
Fatemeh Rajabi Fakhrabadi
Department of English Language, Imam Reza International University, Mashhad, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :