سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

The phenomenal non-stationary E_(-k)/M/1 queue transitions between stability, traffic intensity and chaos

Publish Year: 1404
Type: Journal paper
Language: English
View: 50

This Paper With 10 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_BDCV-5-2_003

Index date: 24 February 2025

The phenomenal non-stationary E_(-k)/M/1 queue transitions between stability, traffic intensity and chaos abstract

This research investigates the unexplored domain of negative k parameters within dynamic systems, focusing on their influence across stability, traffic intensity, and chaotic phases. Using an iterative computational framework, we examine the sigma function (σ) to characterize system responses under varying conditions of k and ρ. Visualizations and insights demonstrate transitions between phases for a first time-ever exploration for negative values of the number of sets of phases, namely k, with novel findings extending foundational studies. This work establishes a baseline for further explorations of negative parameter spaces in complex systems. It is to be noted that, the current work provides new contributions to Ismail’s contemporary pointwise stationary fluid approximation theory, through offering a comprehensive computational framework for exploring dynamic system behaviours across varying parameters.

The phenomenal non-stationary E_(-k)/M/1 queue transitions between stability, traffic intensity and chaos Keywords:

Pointwise stationary fluid approximation , The non-stationary E_k/M/1 queue , k sets of phases

The phenomenal non-stationary E_(-k)/M/1 queue transitions between stability, traffic intensity and chaos authors

Ismail A Mageed

PhD, AIMMA, IEEE, IAENG, School of Computer Science, AI, and Electronics, Faculty of Engineering and Digital Technologies, University of Bradford, United Kingdom.

Abdul Raheem Nazir

Department of Computing, Sheffield Hallam University, United Kingdom.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
A Mageed, I. (۲۰۲۲). Closed form analytic solution for gi/m/۱ ...
نمایش کامل مراجع