Investigating the Impact of Climatic Components on Daily Rainfall Simulation (Case Study: Khorramabad Station)
Publish place: Sustainable Earth Review، Vol: 5، Issue: 3
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 136
This Paper With 16 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_SUER-5-3_004
تاریخ نمایه سازی: 7 اسفند 1403
Abstract:
This study investigates the performance of three models Random Forest, Gaussian Process Regression and Contemporaneous Autoregressive Moving Average in simulating rainfall values at a rain gauge station, Khorramadad, Iran base on CanESM۲ predictors. The models were evaluated using Root Mean Square Error and Nash-Sutcliffe Efficiency statistics to determine their predictive accuracy and efficiency. In the training phase, RF model exhibited an RMSE of ۳.۹۸ mm and an NSE of ۰.۳۲, indicating moderate predictive accuracy and efficiency. GPR showed improved performance with an RMSE of ۲.۵۵ mm and an NSE of ۰.۶۷, reflecting better predictive accuracy and a higher level of efficiency than RF. CARMA model demonstrated the best performance, achieving an RMSE of ۱.۲ mm and an NSE of ۰.۹۴, signifying high predictive accuracy and excellent efficiency. In the testing phase; the progressive improvement in RMSE values from ۴.۸ mm (GPR) and ۴.۱ mm (RF) to ۱.۳ mm (CARMA) across the models highlights the increasing accuracy in rainfall simulation. Similarly, the NSE values, ranging from ۰.۱۵ (GPR) and ۰.۲ (RF) to ۰.۹۳ (CARMA), underscore the enhanced efficiency of the models. The results of a graphical examination of different models in rainfall simulating values at the studied station also showed that the values simulated by the CARMA model are much more similar in terms of dispersion to the observed values. Among the three, CARMA model stands out as the most reliable and effective model for simulating rainfall values, making it a valuable tool for hydrological studies and water resource management.
Keywords:
Authors
Fereshteh Ahmadi
Department of Water Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
Mohammad Nazeri Tahroudi
Department of Water Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :