سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Identifying key traits for heat stress tolerance in wheat using machine learning

Publish Year: 1403
Type: Journal paper
Language: English
View: 23

This Paper With 24 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_IJGPB-13-1_006

Index date: 10 March 2025

Identifying key traits for heat stress tolerance in wheat using machine learning abstract

This study aimed to investigate the effectiveness of machine learning techniques in identifying and prioritizing key traits associated with heat stress tolerance in wheat. Two datasets comprising 203 and 236 wheat genotypes, previously evaluated under normal and heat stress conditions, were analyzed. Machine learning algorithms, including k-Nearest Neighbors (KNN), Support Vector Machines (SVM), Random Forest (RF), and Artificial Neural Networks (ANN), were employed to model the relationships between traits and grain weight of five spikes under heat stress. Results indicated that SVM and ANN models exhibited superior performance in predicting the target trait, with R-squared values approaching 1.0. Correlation analysis and dendrogram analysis highlighted distinct patterns in trait relationships under normal and stress conditions, emphasizing the importance of considering environmental context when studying trait interactions. The analysis of feature importance consistently revealed traits such as the number of grains per spike, days to heading, and 100-grain weight as key characteristics, repeatedly highlighted across different algorithmic approaches, underscoring their fundamental role in heat stress tolerance. The identified key traits can serve as potential targets for genetic manipulation or selection, contributing to the development of heat-tolerant wheat cultivars. The findings of this study highlight the efficacy of machine learning in expediting the breeding of heat-tolerant wheat cultivars.

Identifying key traits for heat stress tolerance in wheat using machine learning Keywords:

Artificial Neural Network (ANN) , Precision breeding , Predictive Modeling , Support Vector Machines (SVM) , Trait Importance

Identifying key traits for heat stress tolerance in wheat using machine learning authors

مهدی زهراوی

Department of Genetic Research, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.

نازنین امیربختیار

Department of Genetic Research, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.

یوسف ارشد

Department of Genetic Research, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.

جواد مهدوی مجد

Agricultural and Natural Resources Research Center of Khuzestan, Agricultural Research, Education and Extension Organization (AREEO), Ahwaz, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Acuña-Galindo M. A., Mason R. E., Subramanian N. K., and ...
Aiqing S., Somayanda I., Sebastian S. V., Singh K., Gill ...
Amirbakhtiar N., Zahravi M., Arshad Y., Mahdavimajd J., and Afraz ...
Aziz A., Mahmood T., Mahmood Z., Shazadi K., Mujeeb-Kazi A., ...
Azrai M., Aqil M., Andayani N. N., Efendi R., et ...
Bose S., Banerjee S., Kumar S., Saha A., Nandy D., ...
Cervantes J., Garcia-Lamont F., Rodríguez-Mazahua L., and Lopez A. (۲۰۲۰). ...
Cheng T., Li M., Quan L., Song Y., Lou Z., ...
Elbasyoni I. S. (۲۰۱۸). Performance and stability of commercial wheat ...
Etminan A., Pour-Aboughadareh A., Mohammadi R., Shooshtari L., Yousefiazarkhanian M., ...
Fu Y. B. (۲۰۱۵). Understanding crop genetic diversity under modern ...
Hasanuzzaman M., Sarwar S., and Islam M. (۲۰۲۰). Identification of ...
International Board for Plant Genetic Resources (IBPGR). (۱۹۷۸). Descriptors for ...
IPCC, (۲۰۲۱). Climate change ۲۰۲۱: the physical science basis. Contribution ...
Jeong J. H., Resop J. P., Mueller N. D., Fleisher ...
Lal M. K., Tiwari R. K., Gahlaut V., Mangal V., ...
Langridge P., and Reynolds M. (۲۰۲۱). Breeding for drought and ...
Mishra S. C., Singh S., Patil R., Bhusal N., Malik ...
Mojtabaee Zamani M., Mabipour M., and Mesgarbashi M. (۲۰۱۵). Evaluating ...
Niazian M., and Niedbała G. (۲۰۲۰). Machine learning for plant ...
Paliwal R., Röder M. S., Kumar U., Srivastava J. P., ...
Posch B. C., Kariyawasam B. C., Bramley H., Coast O., ...
Rahimi Y., Bihamta M. R., Taleei A., Alipour H., and ...
Rehman H. U., Tariq A., Ashraf I., Ahmed M., Muscolo ...
Rezaei E. E., Siebert S., Manderscheid R., Müller J., et ...
Rezaeizadeh A., Mohamadi V., Siahpoush M. R., and Ahmadi A. ...
Satpathi A., Setiya P., Das B., Nain A. S., Jha ...
Sharma N., Kumar M., Daetwyler H. D., Trethowan R. M., ...
Shiferaw B., Smale M., Braun H. J., Duveiller E., Reynolds ...
Singh A., Ganapathysubramanian B., Singh A. K., and Sarkar S. ...
Thistlethwaite R., Tan D., Bokshi A., Ullah S., and Trethowan ...
Uddin S., Haque I., Lu H., Moni M. A., and ...
Ullah A., Nadeem F., Nawaz A., Siddique K. H., and ...
Yadav M. R., Choudhary M., Singh J., Lal M. K., ...
Zahravi M., Amirbakhtiar N., Arshad Y., Mosharraf Ghahfarrokhi G., and ...
Zhao Y., Xiao D., Bai H., Tang J., Liu D. ...
نمایش کامل مراجع