سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Predicting Drug-target Affinity by Discovering Pairwise Interactions Using Cross Attention Network

Publish Year: 1404
Type: Journal paper
Language: English
View: 32

This Paper With 12 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_IJE-38-8_001

Index date: 11 March 2025

Predicting Drug-target Affinity by Discovering Pairwise Interactions Using Cross Attention Network abstract

In drug discovery, Drug-Target Affinity (DTA) is considered as a vital step, as it helps identify the most promising drug candidates in the development process. Since the structure and function of drug and target molecules must be considered, as well as their complex and nonlinear interactions, DTA prediction is a challenging task. The aim of this study is to propose a novel DTA prediction framework that leverages the strengths of Cross-Attention Networks (CANs) using Graph Neural Networks (GNNs). However, representing graphs using GNNs keeps their 3D structural information. They are not fully exploited by existing attention-based approaches. Our framework uses CAN to capture a more accurate representation of the drug-target pair by analyzing how different parts of a drug molecule interact with specific regions of the protein. We used GIN and GAT in a sequential architecture to capture both local and global structural information of drug graph molecules. We evaluate the performance of the proposed method on two benchmark datasets, Davis and KIBA. The performance is promising while it outperforms many state-of-the-art methods in terms of mean square error (MSE) and concordance index (CI). Specifically, for the Davis dataset, we achieve MSE of 0.222 and CI of 0.901, while for KIBA, we obtained MSE of 0.144 and CI of 0.883. Our method increases the interpretability and specificity of interaction analysis, providing deeper insight into the drug discovery process and providing valuable explanations for the predicted DTA. The code of our study is available at: https://github.com/fsonya88/CAN-DTA.

Predicting Drug-target Affinity by Discovering Pairwise Interactions Using Cross Attention Network Keywords:

Predicting Drug-target Affinity by Discovering Pairwise Interactions Using Cross Attention Network authors

S. Falahati

Babol Nooshirvani University of Technology, Electrical and Computer Engineering Department, Babol, Iran

F. Zamani

Babol Nooshirvani University of Technology, Electrical and Computer Engineering Department, Babol, Iran

M. A. Khodamoradi

Universidade NOVA de Lisboa, NOVA School of Science and Technology (FCT NOVA) / Uninova, Center of Technology and Systems, Portugal

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Momtahen S, Taajobian M, Jahanian A. Drug discovery acceleration using ...
Bagherian M, Sabeti E, Wang K, Sartor MA, Nikolovska-Coleska Z, ...
Mukherjee S, Ghosh M, Basuchowdhuri P, editors. DeepGLSTM: deep graph ...
Zhang L, Zeng W, Chen J, Chen J, Li K. ...
Alley EC, Khimulya G, Biswas S, AlQuraishi M, Church GM. ...
Vaswani A. Attention is all you need. Advances in Neural ...
Roy K, Chakraborty P, Mitra I, Ojha PK, Kar S, ...
نمایش کامل مراجع