سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Advanced Multi-Task Learning with Lightweight Networks and Multi-Head Attention for Efficient Facial Attribute Estimation

Publish Year: 1404
Type: Journal paper
Language: English
View: 37

This Paper With 14 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_IJE-38-10_005

Index date: 11 March 2025

Advanced Multi-Task Learning with Lightweight Networks and Multi-Head Attention for Efficient Facial Attribute Estimation abstract

The rapid advancement of computer vision algorithms demands efficient computational resource utilization for practical applications. This study proposes a novel framework that integrates multi-task learning (MTL) with MobileNetV3-Large networks and multi-head attention (MHA) mechanisms to simultaneously estimate facial attributes, including age, gender, race, and emotions. By employing MHA, the model enhances feature extraction and representation by focusing on multiple regions of the input image, thereby reducing computational complexity while significantly improving accuracy. The Receptive Field Enhanced Multi-Task Cascaded (RFEMTC) technique is utilized for effective preprocessing of the input data. Our methodology is rigorously evaluated on the UTKFace, FairFace, and RAF-DB datasets. We introduce a weighted loss function to balance task contributions, enhancing overall performance. Through refinement of the network architecture by analyzing branching points and optimizing the balance between shared and task-specific layers, our experimental results demonstrate significant improvements: a 7% reduction in parameters, a 3% increase in gender detection accuracy, a 5% improvement in race detection accuracy, and a 6% enhancement in emotion detection accuracy compared to single-task methods. Additionally, our proposed architecture reduces age estimation error by approximately one year on the UTKFace dataset and improves age estimation accuracy on the FairFace dataset by 5% compared to state-of-the-art approaches.

Advanced Multi-Task Learning with Lightweight Networks and Multi-Head Attention for Efficient Facial Attribute Estimation Keywords:

Advanced Multi-Task Learning with Lightweight Networks and Multi-Head Attention for Efficient Facial Attribute Estimation authors

M. Rohani

Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran

H. Farsi

Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran

S. Mohamadzadeh

Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Charoqdouz E, Hassanpour H. Feature extraction from several angular faces ...
Hamidi H, Vafaei A, Monadjemi SAH. Analysis and evaluation of ...
نمایش کامل مراجع