سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Enhancing Fire Susceptibility Mapping in Semnan Province: Integrating Machine Learning and Geospatial Analysis

Publish Year: 1403
Type: Journal paper
Language: English
View: 39

This Paper With 24 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_ECOPER-13-1_002

Index date: 12 March 2025

Enhancing Fire Susceptibility Mapping in Semnan Province: Integrating Machine Learning and Geospatial Analysis abstract

Aims: This study assesses the impacts of natural and human factors on fire occurrences, identifies key contributors to fire susceptibility maps, and employs machine learning algorithms (MLAs) to enhance the spatiotemporal patterns of fire susceptibility maps. Materials & Methods: Data were collected from 110 fire locations and 110 non-fire points spanning from 2001 to 2022 at annual scale. Various auxiliary variables, including climate data, terrain features, Normalized Difference Vegetation Index (NDVI), and distance to roads, were analyzed to model fire susceptibility. The study employed multiple MLAs, including Random Forest (RF), Support Vector Machine (SVM), and Gradient Boosting Decision Trees (GBDT), to generate the fire susceptibility maps. Findings: About 70% of fires occurred within 2 km of roads, indicating significant human influence. Grasslands had the highest fire rates, with over 25% of fires from 2001-2022 due to flammable fuels. The RF and mean models identified 0.4% and 1.31% of the area as very high susceptibility (38,800 km² and 12,600 km²), while the GBDT and SVM models identified 2.42% and 1.86% (234,700 km² and 180,000 km²). The very high susceptibility class, though small in percentage, covers large areas. Conclusion: This research highlights the importance of integrating environmental and human factors for predicting fire events in arid regions and developing comprehensive fire susceptibility maps, critical for protecting vulnerable ecosystems. These outcomes provide valuable tools for fire management and mitigation strategies within vulnerable ecosystems. Moreover, developing targeted fire management strategies focused on high-risk areas, such as juniper and broadleaf forests must be a priority.

Enhancing Fire Susceptibility Mapping in Semnan Province: Integrating Machine Learning and Geospatial Analysis Keywords:

Enhancing Fire Susceptibility Mapping in Semnan Province: Integrating Machine Learning and Geospatial Analysis authors

Ali Asghar Zolfaghari

Associate professor, Faculty of Desert Studies, Semnan University, Semnan, Iran

Maryam Raeesi

Faculty of Desert Studies, Semnan University, Semnan, Iran

Zahra Sheikh

Faculty of Desert Studies, Semnan University, Semnan, Iran

Azadeh Soltani

Faculty of Desert Studies, Semnan University, Semnan, Iran

Soghra Poodineh

Faculty of Desert Studies, Semnan University, Semnan, Iran

Mojtaba Amiri

Associate professor, Faculty of Natural Resources, Semnan University, Semnan, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Marlon J., Bartlein P., Daniau A.L., Harrison S., Maezumi S., ...
Zhou K.B., Zhang Z.X., Liu J., Hu Z.X., Duan X.K., ...
Qin Z., Zhu Y., Li W., Xu B. Mapping vegetation ...
نمایش کامل مراجع