سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Comparison of Edge Detection Algorithms for Automatic Identification of Fractures in Hydrocarbon Reservoirs with Image Logs

Publish Year: 1404
Type: Journal paper
Language: English
View: 36

This Paper With 16 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JMAE-16-2_017

Index date: 15 March 2025

Comparison of Edge Detection Algorithms for Automatic Identification of Fractures in Hydrocarbon Reservoirs with Image Logs abstract

Considering the effect of fractures in increasing hydrocarbon recovery, the study of reservoir rock fractures is of particular importance. Fractures are one of the most important fluid flow paths in carbonate reservoirs. Image logs provide the ability to detect fractures and other geological features and reservoir layers. In this study, two approaches were used to detect fractures using FMI image log in two wells A and B located in one of oilfields in southwest of Iran. In the first stage, the correction and processing of the FMI raw data were carried out to identify the number and position of fractures, as well as the dip, extension, classification, and density of fractures. In the second step, by considering that the fractures possess the edges in the FMI images, various edge detection filters such as Prewitt, Canny, Roberts, LOG, Zero-cross and Sobel were applied on the image data, and then, their performances for identification of fractures were compared. Finally, the automatic identification of fractures was done by applying the Hough transform algorithm and the results showed that Canny algorithm was the best option to perform Hough transformation. The comparison of the efficiency of the above-mentioned edge detection filters for identification of fractures, and more importantly, the automatic identification of fractures using the Hough transform algorithm can be considered as the novelty of this research work.

Comparison of Edge Detection Algorithms for Automatic Identification of Fractures in Hydrocarbon Reservoirs with Image Logs Keywords:

Comparison of Edge Detection Algorithms for Automatic Identification of Fractures in Hydrocarbon Reservoirs with Image Logs authors

Mina Shafiabadi

Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran

Abolghasem Kamkar Rouhani

Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
. Roehl, P. O., & Choquette, P. W. (Eds.). (۲۰۱۲). Carbonate ...
. McQuillan, H. (۱۹۸۵). Fracture-controlled production from the Oligo-Miocene Asmari ...
. Rider, M. (۱۹۹۶). The geological interpretation of well logs ...
. Alavi, M. (۱۹۹۴). Tectonics of the Zagros orogenic belt ...
. Mehrabi, H., Rahimpour-Bonab, H., Enayati-Bidgoli, A. H., & Navidtalab, ...
. Schlumberger (۲۰۰۲) Borehole geology, geomechanics and ۳D reservoir modeling ...
. Fossen, H. (۲۰۱۰). Structural Geology, Cambridge University press, New ...
. Gonzalez, R., woods, R., Steven, L. (۲۰۰۴) Eddins, Digital ...
. Al-Amri, S. S., & Kalyankar, N. V. (۲۰۱۰). Image ...
. Bhadauria, H. S., Singh, A., & Kumar, A. (۲۰۱۳). ...
. Bland, J. M., & Altman, D. G. (۱۹۹۶). Statistics ...
. da Fontoura Costa, L., Ben-Tzvi, D., & Sandler, M. ...
نمایش کامل مراجع