سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

The utilization of Convolutional Neural Network for the analysis of Spectral Induced Polarization data through inversion techniques

Publish Year: 1404
Type: Journal paper
Language: English
View: 37

This Paper With 19 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JMAE-16-2_014

Index date: 15 March 2025

The utilization of Convolutional Neural Network for the analysis of Spectral Induced Polarization data through inversion techniques abstract

The technique referred to as Complex Resistivity (CR) or Spectral Induced Polarization (SIP) possesses the capability to distinguish between various kinds of minerals or the sources of induced polarization by utilizing the physical characteristics of minerals or polarizable inclusions. The Generalized Effective Medium Theory of Induced Polarization (GEMTip) model is utilized to derive physical characteristics from SIP data. Different inversion methods are applied for this task, though they encounter difficulties such as computational costs, non-linearity, and the intricacy of the inverse issue. To tackle this, a new inversion approach based on Deep Learning (DL) via Convolutional Neural Network (CNN) is proposed for predicting the parameters of polarizable particles from SIP data. The CNN is trained on 20000 synthetic datasets produced using the GEMTip forward model. While DL networks address non-linearities, specific modifications are applied to synthetic datasets to evaluate the influence of non-linearity and correlation on the results. In the Kervian region southwest of Saqqez city, gold mineralization is linked to quartz and pyrite minerals, with two types of pyrite recognized - coarse-grained barren and fine-grained auriferous. The existence of sulfide mineral pyrite, along with variations in pyrite sizes, presents an attractive target for SIP exploration in the investigated area. The trained network is also validated on Gravian data and effectively retrieves parameters as evidenced by the data. The proposed methodology simplifies the inversion process by estimating parameters in one step, enabling a direct and efficient procedure.

The utilization of Convolutional Neural Network for the analysis of Spectral Induced Polarization data through inversion techniques Keywords:

The utilization of Convolutional Neural Network for the analysis of Spectral Induced Polarization data through inversion techniques authors

Parnian Javadi Sharif

Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran

Alireza Arab Amiri

Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran

Behzad Tokhmechi

Faculty of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran

Fereydoun Sharifi

Post Doctoral Researcher, University of Cologne, Cologne, Germany

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
. Pelton, W. H., Ward, S. H., Hallof, P. G., ...
. Luo, Y., & Zhang, G. (۱۹۹۸). Theory and application of ...
. Emond, A. M. (۲۰۰۷). Electromagnetic modeling of porphyry systems from ...
. Goold, J. W., Cox, L. H., & Zhdanov, M. ...
. Zhdanov, M. (۲۰۰۸). Generalized effective-medium theory of induced polarization. Geophysics, ۷۳(۵), ...
. Sharifi, F., Arab-Amiri, A.R., Borner, R.U., Kamkar-Rouhani, A., (۲۰۱۸). ...
. Sharifi, F., Arab-Amiri, A. R., Kamkar-Rouhani, A., & Börner, ...
. Kemna, A. (۲۰۰۰). Tomographic inversion of complex resistivity: Theory and ...
. Boerner, J. H., Herdegen, V., Repke, J. U., & ...
. Kemna, A., Binley, A., Cassiani, G., Niederleithinger, E., Revil, ...
. Madsen, L. M., Fiandaca, G., Auken, E., & Christiansen, ...
. Bérubé, C. L., Chouteau, M., Shamsipour, P., Enkin, R. ...
. Gurin, G., Ilyin, Y., Nilov, S., Ivanov, D., Kozlov, ...
. Fiandaca, G., Madsen, L. M., & Maurya, P. K. ...
. Jackson, D. D., & Matsu'Ura, M. (۱۹۸۵). A Bayesian ...
. Ivanov, J., Miller, R. D., Xia, J., Steeples, D., ...
. Aitchison, J. (۱۹۸۲). The statistical analysis of compositional data. Journal ...
. Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., & Barcelo-Vidal, ...
. Filzmoser, P., Hron, K., & Reimann, C. (۲۰۰۹). Principal ...
. Moghadas, D. (۲۰۲۰). One-dimensional deep learning inversion of electromagnetic ...
. Hansen, T. M., & Cordua, K. S. (۲۰۱۷). Efficient ...
. Shahriari, M., Pardo, D., Kargaran, S., & Teijeiro, T. ...
. Linting, M., Meulman, J. J., Groenen, P. J., & ...
. Chen, X., Xia, J., Pang, J., Zhou, C., & ...
. Yousefi, M., Kreuzer, O. P., Nykänen, V., & Hronsky, ...
. Yousefi, M., & Hronsky, J. M. (۲۰۲۳). Translation of ...
. Mohajjal, M., Eshragh, A., (۲۰۰۸). Geological map of Kervian ...
. Ghazanfari, M, Fazli Khani, T. & Abbasi, Z. (۲۰۱۰). ...
. Puzyrev, V. (۲۰۱۹). Deep learning electromagnetic inversion with convolutional ...
. Kingma, D. P., & Ba, J. (۲۰۱۴). Adam: A ...
. Telford, W. M., Geldart, L. P., & Sheriff, R. ...
. Thió-Henestrosa, S., & Martín-Fernández, J. A. (۲۰۰۶). Detailed guide ...
. Compositional Data Package, )۲۰۲۲(. University of Girona[۳۶]. Stacklies, W., ...
. Dürr, O., Sick, B., & Murina, E. (۲۰۲۰). Probabilistic deep ...
نمایش کامل مراجع