سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Classification of Some Iranian Vicia Species Using SEM Image Analysis Coupled with Conventional Texture Analysis and Deep Learning

Publish Year: 1403
Type: Journal paper
Language: English
View: 28

This Paper With 15 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JASTMO-27-2_008

Index date: 17 March 2025

Classification of Some Iranian Vicia Species Using SEM Image Analysis Coupled with Conventional Texture Analysis and Deep Learning abstract

Micromorphological characteristics of seed sculpturing might be effective in circumscribing the infra-specific taxa in the genus Vicia. The present study was conducted to determine whether microstructural and seed coat texture data obtained from SEM images can serve as sufficient tools for delimiting Vicia genus. Other than visual inspections, a variety of texture-based methods, including the four conventional approaches of GLCM, LBP, LBGLCM, and SFTA, and the four pre-trained convolutional neural networks, namely, ResNet50, VGG16, VGG19, and Xception models were employed to extract features and to classify the species of Vicia genus using SEM images. In a subsequent step, the four unsupervised k-means, Mean-shift, agglomerative, and Gaussian mixture classification methods were used to group the identified Vicia spices based on the underlying features thus extracted. Moreover, the three supervised classifiers of Multilayer Perceptron Network (MLP), Support Vector Machine (SVM), and k-Nearest Neighbor (kNN) were compared in terms of capability in discriminating the different visually-identified classes. SEM results showed that three classes might be identified based on the micromorphological character-species connections and that the differences among the species in the Vicia genus and the validity of Vicia sativa could be confirmed. Regarding the performance of the classifiers, SFTA textural descriptor outperformed the GLCM, LBP, and LBGLCM algorithms, but yielded a decreased accuracy compared with deep learning models. The combined Xception model and a MLP classifier was successful to discriminate the species in the Vicia genus with the best classification performances of 99 and 96% in training and testing, respectively.

Classification of Some Iranian Vicia Species Using SEM Image Analysis Coupled with Conventional Texture Analysis and Deep Learning Keywords:

Classification of Some Iranian Vicia Species Using SEM Image Analysis Coupled with Conventional Texture Analysis and Deep Learning authors

Mehrnoosh Jafari

Department of Biosystems Engineering, College of Agriculture, Isfahan University of Technology Isfahan ۸۴۱۵۶-۸۳۱۱۱, Islamic Republic of Iran.

Seyed Ali Mohammad Mirmohammady Maibody

Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan ۸۴۱۵۶-۸۳۱۱۱, Islamic Republic of Iran.

Mohammad Hossein Ehtemam

Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan ۸۴۱۵۶-۸۳۱۱۱, Islamic Republic of Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Aedo, C. ۲۰۱۶. Taxonomic Revision of Geranium sect. Polyantha (Geraniaceae) ...
Ariunzaya, G., Kavalan, J. C. and Chung, S. ۲۰۲۳. Identification ...
Asadova, K. and Asgarov, A. ۲۰۱۸. Distribution and Ecobiological Research ...
Boissier, E. and Buser, R. ۱۸۸۸. Flora Orientalis : Sive, ...
Buyukarikan, B. and Ulker, E. ۲۰۲۲. Classification of Physiological Disorders ...
Cai, J., Liu, M., Zhang, Q., Shao, Z., Zhou, J., ...
Chrtková-Žertová, A. ۱۹۷۹. Vicia. Flora Iranica, ۱۴۰: ۱۶-۵۶ ...
Chuang, K. S., Tzeng, H. L., Chen, S., Wu, J. ...
Cronquist, A. ۱۹۸۸. The Evolution and Classification of Flowering Plants. ...
Engler, A. ۱۸۹۲. Syllabus der Pflanzenfamilien. Vol. ۲. Gebrüder Borntraeger ...
Fedchko, B. A. ۱۹۴۸. Flora of the USSR (Flora SSSR). ...
Gabr, D. G. ۲۰۱۸. Significance of Fruit and Seed Coat ...
Genze, N., Bharti, R., Grieb, M., Schultheiss, S. J. and ...
Gunn, C. R. ۱۹۷۱. Seeds of Native and Naturalized Vetches ...
Ilakiya, J. and Ramamoorthy, D. ۲۰۲۱. SEM and Light Microscopic ...
Jalal, M., Shaheen, S., Saddiqe, Z., Harun, N., Abbas, M. ...
Kaus, M. R., Warfield, S. K., Nabavi, A., Black, P. ...
Kozłowski, M., Górecki, P. and Szczypiński, P. M. ۲۰۱۹. Varietal ...
Liu, L., Fieguth, P., Wang, X., Pietikainen, M. and Hu, ...
Liu, X. and Aldrich, C. ۲۰۲۲. Deep Learning Approaches to ...
Luo, T., Zhao, J., Gu, Y., Zhang, S., Qiao, X., ...
Narmadha, R., Sengottaiyan, N. and Kavitha, R. ۲۰۲۲. Deep Transfer ...
Pakravan, M., Hayel Moghaddam, K. and Ghahreman, A. ۲۰۰۱. Use ...
Pieniazek, F. and Messina, V. ۲۰۱۶. Scanning Electron Microscopy Combined ...
Prasad, R., Mukherjee, K. and Gangopadhyay, G. ۲۰۱۴. Image-Analysis Based ...
Przybyło, J. and Jabłoński, M. ۲۰۱۹. Using Deep Convolutional Neural ...
Rashid, N., Zafar, M., Ahmad, M., Malik, K., Haq, I., ...
Rashid, N., Zafar, M., Ahmad, M., Memon, R. A., Akhter, ...
Ribas, L. C., Sa Junior, J. J. M., Scabini, L. ...
Shrivastava, V. K., Pradhan, M. K., Minz, S. and Thakur, ...
Stern, W. T. ۱۹۸۳. Botanical Latin. ۳ Edition, Thomas Nelson, ...
Szkudlarz, P. and Celka, Z. ۲۰۱۶. Morphological Characters of the ...
Taheri-Garavand, A., Nasiri, A., Fanourakis, D., Fatahi, S., Omid, M. ...
Verma, S., Chug, A. and Singh, A. P. ۲۰۲۰. Application ...
Voronchikhin, V. ۱۹۸۱. Identification of Certain Species of the Genus ...
Yang, S., Zheng, L., He, P., Wu, T., Sun, S. ...
نمایش کامل مراجع