سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Human Activity Recognition Using a Hybrid Approach of Radial Basis Neural Networks and Support Vector Machines

Publish Year: 1404
Type: Journal paper
Language: English
View: 31

This Paper With 11 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_IJWR-8-1_004

Index date: 18 March 2025

Human Activity Recognition Using a Hybrid Approach of Radial Basis Neural Networks and Support Vector Machines abstract

The Internet of Things (IoT) has become increasingly prevalent, and recent advances in machine learning, particularly in healthcare, have gained significant attention from researchers. One prominent interdisciplinary topic in these fields is human activity recognition (HAR). Despite extensive research, several challenges remain in this area, especially concerning the application of modern machine learning techniques for HAR. This study proposes a novel method for human activity recognition by combining radial basis function neural networks (RBFNN) and support vector machines (SVM). The approach enhances recognition accuracy and algorithm efficiency by extracting relevant features using RBFNN and convolutional neural networks (CNN). Classification is then performed using SVM. The proposed method was evaluated using the UCI HAR dataset, which includes six distinct human activities. Results demonstrate that the proposed approach achieves an accuracy of 99%, surpassing existing methods.

Human Activity Recognition Using a Hybrid Approach of Radial Basis Neural Networks and Support Vector Machines Keywords:

Human Activity Recognition , Radial basis neural network algorithm , Support Vector Machine Algorithm

Human Activity Recognition Using a Hybrid Approach of Radial Basis Neural Networks and Support Vector Machines authors

Fatemeh Azimzadeh

Scientific Information Database, ACECR, Tehran, Iran.

Ali Ghoroghi

School of Engineering, Cardiff University, Cardiff, UK

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Khalifa, G. Lan, M. Hassan, A. Seneviratne, and S. K. ...
https://doi.org/۱۰.۴۸۵۵۰/arXiv.۲۱۰۲.۰۷۷۱۸H. Zhang, L. Zhang, and Y. Jiang, "Overfitting and underfitting ...
نمایش کامل مراجع