سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

A Novel Video Super-Resolution Enhancement Method Based on Residual Learning Using Hidden Markov Random Fields and a New Deep Learning Network Architecture

Publish Year: 1403
Type: Journal paper
Language: English
View: 34

This Paper With 10 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_MSEEE-4-1_006

Index date: 22 March 2025

A Novel Video Super-Resolution Enhancement Method Based on Residual Learning Using Hidden Markov Random Fields and a New Deep Learning Network Architecture abstract

In today's world, improving the quality and clarity of videos has become increasingly important, particularly in the fields of surveillance, medicine, and imaging technologies. Traditional super-resolution methods primarily focus on the full reconstruction of video frames, which poses challenges in preserving fine details and complex structures. This paper introduces a novel approach based on parallel deep networks, effectively enhancing video quality by dividing video frames into three separate input branches: raw images, outputs based on Hidden Markov Random Fields (HMRF), and temporal images. The method also leverages techniques such as residual learning and random patching within a unified framework that combines spatial segmentation (HMRF) and temporal information. This integration allows the model to better capture spatial and temporal dependencies, leading to more accurate and efficient video frame reconstruction. To better focus on high-frequency details and mitigate the vanishing gradient problem, residual learning is employed, enabling the network to estimate only the additional details necessary for reconstructing high-resolution images. Additionally, through random patching, the network training process is designed to emphasize critical features and intricate textures. Experimental results demonstrate that the proposed method achieves an SSIM of 0.92857 and a PSNR of 34.8617, offering superior clarity in video reconstruction.

A Novel Video Super-Resolution Enhancement Method Based on Residual Learning Using Hidden Markov Random Fields and a New Deep Learning Network Architecture Keywords:

A Novel Video Super-Resolution Enhancement Method Based on Residual Learning Using Hidden Markov Random Fields and a New Deep Learning Network Architecture authors

Mahnaz Mahdizadeh

Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.

Ali Khazaei

Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.

Seyyed Javad Seyyed Mahdavi Chabok

Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.

Farzan Khatib

Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Chan, K. C., Zhou, S., Xu, X., & Loy, C. ...
Lin, J., Huang, Y., & Wang, L. (۲۰۲۱). FDAN: Flow-guided ...
Li, Tianyi, et al. "A Deep Learning Approach for Multi-Frame ...
Liu, Dong, et al. "Deep Learning-Based Technology in Responses to ...
Lin, Hongwei, et al. "Improved Low-Bitrate HEVC Video Coding using ...
Wang, Y., Guo, J., Gao, H., & Yue, H. (۲۰۲۱). ...
Xue, T., Chen, B., Wu, J., Wei, D., & Freeman, ...
Zamzam, P., Rezaei, P., Khatami, S. A., & Appasani, B. ...
Cao, Y., Wang, C., Song, C., Tang, Y., & Li, ...
Feng, Z., Zhang, W., Liang, S., & Yu, Q. (۲۰۲۳). ...
Wang, W., Liu, Z., Lu, H., Lan, R., & Zhang, ...
نمایش کامل مراجع