Cu-bearing signatures from multi-element geochemical data, a correct strategy to implement a Convolutional Autoencoder Algorithm
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 167
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMGE-59-1_001
تاریخ نمایه سازی: 19 فروردین 1404
Abstract:
Recent advancements in autoencoders and their variants have notably enhanced the detection of multi-element geochemical signatures linked to ore occurences. This research employed a convolutional autoencoder algorithm (CAE) to identify geochemical anomalies, leveraging the algorithm’s ability into account the spatial correlation within the geochemical dataset. In this framework, two stream sediment datasets were generated in the Feizabad district using a conceptual modelling approach alongside a big data analysis strategy. These datasets were individually fed into the CAE model to identify multi-element geochemical anomalies based on the reconstruction error in an unsupervised manner. A comparative analysis of two geochemical prospectivity models and the simplified geological map of Feizabad demonstrates a strong spatial correlation between the identified anomaly regions and known mineral occurrences, which are distributed across andesite, tuff, and Eocene-Oligocene intrusive rocks. However, a quantitative assessment using prediction-area plots indicates that the multi-element geochemical map derived from the conceptual model exhibits a higher prediction rate (۷۲%) compared to the geochemical prospectivity map generated through the big data approach (۶۳%).
Keywords:
Authors
Mobin Saremi
Department of Mining Engineering, Amirkabir University of Technology, Tehran, Iran.
Seyyed Ataollah Agha Seyyed Mirzabozorg
School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.
Abbas Maghsoudi
Department of Mining and Metallurgy, Amirkabir University of Technology, Tehran, Iran.
Maysam Abedi
School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.
Ramin DehghanNiri
School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :