Gas Reservoir Detection Using Mixed Components Short Time Fourier Transform (MC-STFT) as a new attribute
Publish place: Journal of the Earth and Space Physics، Vol: 50، Issue: 4
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: Persian
View: 96
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JESPHYS-50-4_006
تاریخ نمایه سازی: 27 فروردین 1404
Abstract:
Identification of gas reservoirs as a main natural resource due to their economic importance has always been one of the most important issues in research studies in the oil and gas fields. Accurate localization of a gas reservoir through seismic data has been broadly studied. The final destination of all seismic attributes is to distinguish a specific feature. Accordingly, many seismic attributes have been developed, among which short-time Fourier transform (STFT)-based methods play an important role. The location of gas reservoirs can be detected, taking advantage of its particular criteria in seismic data. Generally, seismic signals are non-stationary as their frequency responses vary with time. Thus we propose an attribute that utilizes mixed components of STFT (MC-STFT). The novelty about this method is that without altering STFT method or adding any complexity, MC-STFT is able to detect gas reservoirs at high resolution. Simplicity and time efficiency can make a method superior. In fact, this method takes advantage of extracting three frequency components obtained by STFT. In the next step, we can do the second iteration of the procedure, this will represent the degree of sharpness of reduction in amplitude and again do the same jobs as before and it leads to this, making it more specific. We apply this method to three data sets, first, Marmousi model and then two other real seismic zero-offset sections. To evaluate the proposed method compared with the Synchrosqueezing STFT (SSTFT). The results confirm the good performance of MC-STFT in high-resolution gas reservoir detection.
Keywords:
Authors
Ali Jalali
Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran.
Majid Bagheri
Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran.
Mostafa Abbasi
National Iranian oil company (NIOC), Tehran, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :