Unite and conquer approach for data clustering based on particle swarm optimization and moth flame optimization
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 136
This Paper With 33 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAO-15-33_003
تاریخ نمایه سازی: 28 اردیبهشت 1404
Abstract:
Data clustering is a widely used technique in various domains to group data objects according to their similarity. Clustering molecules is a useful process where you can easily subdivide and manipulate and large datasets to group compounds into smaller clusters with similar properties. To dis-cover new molecules with optimal properties and desired biological activity, can be used by comparing molecules and their similarities. A prominent clustering technique is the k-means algorithm, which assigns data objects to the nearest cluster center. However, this algorithm relies on the ini-tial selection of the cluster centers, which can affect its convergence and quality. To address this issue, metaheuristic algorithms have been proposed as a type of approximate optimization algorithm capable of identifying almost optimal solutions. In this paper, a new meta-heuristic approach is proposed by combining two algorithms of particle swarm optimization (PSO) and moth flame optimization (MFO), following that, it is used to improve data clustering. The fficiency of the proposed approach is evaluated utilizing benchmark functions F۱-F۲۳. Its efficiency is evaluated with PSO and MFO algorithms on different datasets. Our experiential results show that the suggested approach exceeds the PSO and MFO algorithms with respect to speed of convergence and clustering quality.
Keywords:
Authors
E. Mosavi
Parallel Processing Laboratory, Yazd University, Yazd, Iran.
S.A. Shahzadeh Fazeli
Parallel Processing Laboratory, Yazd University, Yazd, Iran.
E. Abbasi
Department of Computer Science, Yazd University, Yazd, Iran.
F. Kaveh-Yazdy
Researcher at Oncober, Basel, Switzerland.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :