Estimation of Surface Tension of Aqueous Polymer Solutions Using Soft Computing Approaches
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 117
This Paper With 17 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJCCE-42-5_022
تاریخ نمایه سازی: 17 خرداد 1404
Abstract:
The surface tension of aqueous polymer solutions is an important property that plays a vital role in mass and heat transfer. In this study, the surface tension of a polymer mixture is modeled using four algorithms (Adaptive Neuro-Fuzzy Inference System (ANFIS), Multi-Layer Perceptron (MLP), Radial Basis Function (RBF), and Adaptive group of Ink Drop Spread (AGIDS) ) which has been developed in the soft-computing domain. In this paper, four models for predicting the surface tension are applied and the results were compared with our published experimental data and it was found that the predictions of these models fit the experimental data very accurately. Also, a comparison has been done to evaluate the effectiveness of the relevant four algorithms in the current problem. The simulation results have shown that ANFIS and RBF model predictions are more accurate than the two others in the current problem.
Keywords:
Authors
Iman Esmaili Paeen Afrakotia
Faculty of Technology and Engineering, University of Mazandaran, Babolsar, I.R. IRAN
Ali Akbar Amooey
Faculty of Technology and Engineering, University of Mazandaran, Babolsar, I.R. IRAN
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :