Finite-time Sliding Mode Control for Continuous Stirred Tank Reactor Based on Disturbance Observer
Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 117
This Paper With 14 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJCCE-41-11_024
تاریخ نمایه سازی: 17 خرداد 1404
Abstract:
This paper aims to investigate the robust control problem of Continuously Stirred Tank Reactors (CSTR). A CSTR is one of the most essential pieces of equipment in chemical processes, whose effects of highly nonlinear dynamic and external disturbances make it very difficult to be controlled. Firstly, a novel finite-time sliding mode control is introduced that eliminates disturbance effects and ensures finite-time tracking. Secondly, to better compensate for disturbances and to improve controller performance, a finite-time disturbance observer is developed. Finally, an adaptive robust control method is introduced based on the proposed sliding mode control and the disturbance observer. Stability analysis is performed to investigate the finite-time tracking of the closed-loop system under the proposed controllers. Besides, to enhance the performance of the proposed controllers, the design parameters are tuned by the genetic optimization algorithm. Simulation results are produced to confirm the efficiency of the proposed methods in terms of tracking errors and convergence rates. The proposed finite-time sliding mode control and the adaptive finite-time sliding mode control with settling times of ۱.۷۳s and ۱.۷۱s as well as IAE of ۰.۵۰۹ and ۰.۴۸۴۳, respectively, showed more desirable performance than other controllers.
Keywords:
Authors
Mehran Derakhshannia
Department of Electrical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, I.R. IRAN
Seyyed Sajjad Moosapour
Department of Electrical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, I.R. IRAN
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :