Finding Exact and Solo LTR-Retrotransposons in Biological Sequences Using SVM

Publish Year: 1391
نوع سند: مقاله ژورنالی
زبان: English
View: 113

This Paper With 6 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJCCE-31-2_015

تاریخ نمایه سازی: 17 خرداد 1404

Abstract:

Finding repetitive subsequences in genome is a challengeable problem in bioinformatics research area. A lot of approaches have been proposed to solve the problem, which could be divided to library base and de novo methods. The library base methods use predetermined repetitive genome’s subsequences, where library-less methods attempt to discover repetitive subsequences by analytical approaches. In this article we propose novel de novo methodology which stands on theory of pattern recognition’s science. Our methodology by using Support Vector Machine (SVM) classification and clustering methods could extract exact and Solo LTR-retrotransposons. This methodology issued to show complexity efficiency and applicability of the pattern recognition theories in bioinformatics and biomathematics research areas.We demonstrate applicability of our methodology by comparing its results with other well-known de novo method. Both applications return classes of discovered repetitive subsequences, were their results when had applied on show more that ۹۰ percents similarities.

Authors

Hesam Torabi Dashti

Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics and Center of Excellence in Biomathematics, University of Tehran, Tehran, I.R. IRAN

Ali Masoudi-Nejad

Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics and Center of Excellence in Biomathematics, University of Tehran, Tehran, I.R. IRAN

Fatemeh Zare

Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics and Center of Excellence in Biomathematics, University of Tehran, Tehran, I.R. IRAN

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Pevzner P.A., Tang H., Tesler G., De Novo Repeat Classification ...
  • Kumar A., Hirochika H., Application of Retrotransposons as Genetic Tools ...
  • McCarthy E., McDonald J., LTR-STRUC: a Novel Search and Identification ...
  • Bao Z., Eddy S., Automated de Novo Identification of Repeat ...
  • Price A.L., Jones N.C., Pevzner P.A., De Novo Identification of ...
  • Edgar R.C., Myers E.W., PILER: Identification and Classification of Genomic ...
  • Rho M., Choi J.-H., Kim S., De Novo Identification of ...
  • Ben-Hur A., Horn D., Siegelmann H.T., Vapnik V., Support Vector ...
  • VapnikV., “The Nature of Statistical Learning Theory”, Springer-Verlag Press(۱۹۹۵) ...
  • Cristianini N., Shawe-Taylor J., “An Introduction to Support Vector Machines ...
  • Duda R.O., Hart P.E., Stork D.G., “Pattern Classification”, ۲nd Ed., ...
  • Roberts S.J., Non-Parametric Unsupervised Cluster Analysis, Pattern Recognition, p. ۳۰,۲۶۱۲۷۲ ...
  • Farach M., Optimal Suffix Tree Construction with Large Alphabets, "Annual ...
  • McCreight E.M., A Space-Economical Suffix Tree Construction Algorithm, Journal of ...
  • Ukkonen E., On-Line Construction of Suffix Trees, Algorithmica, ۱۴, p. ...
  • Weiner P., Linear Pattern Matching Algorithms, In:“Proceedings of the ۱۴th ...
  • Gusfield D., “Algorithms on String, Trees, and Sequences”, Cambridge University ...
  • Gusfield D., “Algorithms on String, Trees, and Sequences, Computer Science ...
  • Agarwal P., States D., The Repeat Pattern Toolkit (RPT):Analyzing the ...
  • Burke J., Davison D., Hide W., d۲-Cluster: A Validated Method ...
  • Malde K., Schneeberger K., Coward E., Jonassen I., RBR: Library-Less ...
  • Huang X., Wang J., Aluru S., Yang S.P., Hillier L., ...
  • نمایش کامل مراجع