Novel bone graft substitutes in bone tissue engineering

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 98

This Paper With 16 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_NAMJ-12-3_002

تاریخ نمایه سازی: 29 تیر 1404

Abstract:

Objective(s): Globally, the prevalence of bone illnesses and diseases has been significantly rising. Bone tissue engineering (BTE), which can be produced continuously and doesn’t transmit disease, has been suggested as a possible alternative to the traditional use of bone grafts. However, a number of limitations or challenges have prevented the further development of BTE techniques for clinical application. In order to promote bone regeneration, BTE uses a synergistic combination of biomaterials, cells and therapeutic components. Tissue engineering and bone tissue engineering (BTE) are rapidly expanding fields with increasing clinical applications. However, there are still challenges and limitations that need to be addressed, including incomplete knowledge of the biomaterials and their interactions with cells. With this in mind, we focused on the most recent researches to find what new strategies are being used to overcome obstacles in bone tissue engineering and which ones have the most potentials based on their results for future investigations.Materials and Methods: To gather information for this article, we conducted a thorough search using PubMed, Scopus and Web of Science search engines. We used relevant keywords such as Bone tissue engineering, scaffolds, bioactive glass-ceramic, and hydrogel. From the initial search results, we selected ۹۲ of the most recent and relevant articles based on their creativity in methods, novelty, and relevance to the subject.Results: Biocompatibility, osteoconductivity, osteogenicity and osteointegration are the main important properties of the bone mimetic scaffold platforms used in bone tissue engineering. Development of scaffolds with sufficient mechanical properties, porous structure, appropriate surface topography is a challenging process. In this regard, a combination of various types of biomaterials such as bioactive glass-ceramic, different biodegradable polymers and even stem cells/ autologous cells are required. Conclusion: Even though many BTE procedures have been numbered, only a few of them have so far been given clinical approval. The majority of these methods use a single component and fill deficiencies with cells, substances or materials. In order for BTE to become a widely used clinical reality, it must combine the most recent technologies that make use of all the required components.

Authors

Seyedeh Mona Haghi

Student Research Committee, Faculty of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran

Mona Gharavian

Student Research Committee, Faculty of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran

Emad Azimi

Student Research Committee, Faculty of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran

Kiarash Nazari Tavalaei

Student Research Committee, Faculty of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran

Shirin Hamed Akbari Toosi

Department of Stem Cells and Regenerative Medicine, Mashhad University of Medical Science, Mashhad, Iran

Marzieh Mohammadi

Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Dasari A, Xue J, Deb S. Magnetic nanoparticles in bone ...
  • Mohammadi M, Mousavi Shaegh SA, Alibolandi M, Ebrahimzadeh MH, Tamayol ...
  • Codrea CI, Croitoru AM, Baciu CC, Melinescu A, Ficai D, ...
  • Xu C, Wang M, Guo W, Sun W, Liu Y. ...
  • Zhu T, Cui Y, Zhang M, Zhao D, Liu G, ...
  • Black CRM, Goriainov V, Gibbs D, Kanczler J, Tare RS, ...
  • Koons GL, Diba M, Mikos AG. Materials design for bone-tissue ...
  • Li H, Pan S, Xia P, Chang Y, Fu C, ...
  • Zafar MJ, Zhu D, Zhang Z. ۳D printing of bioceramics ...
  • Guo B, Ma PX. Conducting polymers for tissue engineering. Biomacromolecules. ...
  • Su X, Wang T, Guo S. Applications of ۳D printed ...
  • Zhang Y, Wu D, Zhao X, Pakvasa M, Tucker AB, ...
  • Boccaccio A, Ballini A, Pappalettere C, Tullo D, Cantore S, ...
  • Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent ...
  • O’Keefe RJ, Mao J. Bone tissue engineering and regeneration: from ...
  • Downey PA, Siegel MI. Bone biology and the clinical implications ...
  • Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation ...
  • Clarke B. Normal bone anatomy and physiology. Clin J Am ...
  • Bonewald LF. The amazing osteocyte. J Bone Miner Res. ۲۰۱۱;۲۶(۲):۲۲۹-۲۳۸ ...
  • Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simões MJ, Cerri PS. ...
  • Sims NA, Gooi JH. Bone remodeling: Multiple cellular interactions required ...
  • Andersen TL, Sondergaard TE, Skorzynska KE, Dagnaes-Hansen F, Plesner TL, ...
  • Ralston SH. Bone structure and metabolism. Medicine. ۲۰۱۳;۴۱(۱۰):۵۸۱-۵۸۵ ...
  • Jakob F, Ebert R, Ignatius A, Matsushita T, Watanabe Y, ...
  • Mohammadi M, Alibolandi M, Abnous K, Salmasi Z, Jaafari MR, ...
  • Wu Q, Wang X, Jiang F, Zhu Z, Wen J, ...
  • Bozorgi A, Sabouri L. Osteosarcoma, personalized medicine, and tissue engineering; ...
  • Vacanti CA. The history of tissue engineering. J Cell Mol ...
  • Qu H, Fu H, Han Z, Sun Y. Biomaterials for ...
  • Berthiaume F, Maguire TJ, Yarmush ML. Tissue engineering and regenerative ...
  • Toosi S, Behravan N, Behravan J. Nonunion fractures, mesenchymal stem ...
  • Toosi S, Naderi-Meshkin H, Kalalinia F, HosseinKhani H, Heirani-Tabasi A, ...
  • Alarçin E, Lee TY, Karuthedom S, Mohammadi M, Brennan MA, ...
  • Burny F, Donkerwolcke M, Muster D. Biomaterials education: a challenge ...
  • Feng Y, Zhu S, Mei D, Li J, Zhang J, ...
  • Mistry AS, Mikos AG. Tissue engineering strategies for bone regeneration. ...
  • Mohammadi M, Alibolandi M, Abnous K, Salmasi Z, Jaafari MR, ...
  • Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering ...
  • Ding DC, Shyu WC, Lin SZ. Mesenchymal stem cells. Cell ...
  • Colnot C. Cell sources for bone tissue engineering: insights from ...
  • Shirzad M, Zolfagharian A, Matbouei A, Bodaghi M. Design, evaluation, ...
  • Porter JR, Ruckh TT, Popat KC. Bone tissue engineering: a ...
  • Khan Y, Yaszemski MJ, Mikos AG, Laurencin CT. Tissue engineering ...
  • Zhang Y, Gulati K, Li Z, Di P, Liu Y. ...
  • Cestari F, Agostinacchio F, Galotta A, Chemello G, Motta A, ...
  • Bose S, Roy M, Bandyopadhyay A. Recent advances in bone ...
  • Koushik TM, Miller CM, Antunes E. Bone tissue engineering scaffolds: ...
  • Velasco MA, Narváez-Tovar CA, Garzón-Alvarado DA. Design, materials, and mechanobiology ...
  • Bighetti-Trevisan RL, Souza ATP, Tosin IW, Bueno NP, Crovace MC, ...
  • Dec P, Modrzejewski A, Pawlik A. Existing and novel biomaterials ...
  • Baino F, Novajra G, Vitale-Brovarone C. Bioceramics and scaffolds: a ...
  • Saberi A, Behnamghader A, Aghabarari B, Yousefi A, Majda D, ...
  • Xu F, Ren H, Zheng M, Shao X, Dai T, ...
  • Kuru L, Griffiths GS, Petrie A, Olsen I. Alkaline phosphatase ...
  • Caddeo S, Mattioli-Belmonte M, Cassino C, Barbani N, Dicarlo M, ...
  • Alibolandi M, Bagheri E, Mohammadi M, Sameiyan E, Ramezani M. ...
  • Thomas A, Bera J. Preparation and characterization of gelatin-bioactive glass ...
  • Kwon JW, Lee YH, Lee BH, Kim JH, Suk KS. ...
  • Kumar A, Mir SM, Aldulijan I, Mahajan A, Anwar A, ...
  • He J, Lin Z, Hu X, Xing L, Liang G, ...
  • Thitiset T, Damrongsakkul S, Yodmuang S, Leeanansaksiri W, Apinun J, ...
  • Razazpour F, Najafi F, Moshaverinia A, Fatemi SM, Sima S. ...
  • Xu C, Chang Y, Xu Y, Wu P, Mu C, ...
  • Gwon Y, Park S, Kim W, Han T, Kim H, ...
  • Qasim M, Le NXT, Nguyen TPT, Chae DS, Park SJ, ...
  • Linder HR, Glass AA, Day DE, Sell SA. Manipulating air-gap ...
  • Xing Z, Cai J, Sun Y, Cao M, Li Y, ...
  • Li C, Zhang W, Nie Y, Du X, Huang C, ...
  • Lin H, Li Z, Xie Z, Tang S, Huang M, ...
  • Xu Y, Xu C, Yang K, Ma L, Li G, ...
  • Sun X, Mao Y, Liu B, Gu K, Liu H, ...
  • Dibazar ZE, Mohammadpour M, Samadian H, Zare S, Azizi M, ...
  • Gao F, Xu Z, Liang Q, Li H, Peng L, ...
  • Yue S, He H, Li B, Hou T. Hydrogel as ...
  • Dyondi D, Webster TJ, Banerjee R. A nanoparticulate injectable hydrogel ...
  • Igwe JC, Mikael PE, Nukavarapu SP. Design, fabrication and in ...
  • Li J, Li L, Wu T, Shi K, Bei Z, ...
  • Pan S, Yin Z, Shi C, Xiu H, Wu G, ...
  • Kotlarz M, Melo P, Ferreira AM, Gentile P, Dalgarno K. ...
  • Seong JM, Kim BC, Park JH, Kwon IK, Mantalaris A, ...
  • Yousefi A-M, James PF, Akbarzadeh R, Subramanian A, Flavin C, ...
  • Mito K, Lachnish J, Le W, Chan C, Chang YL, ...
  • Liu Y, Chen P, Zhou T, Zeng J, Liu Z, ...
  • Duan W, Haque M, Kearney MT, Lopez MJ. Collagen and ...
  • Gao X, Cheng H, Sun X, Lu A, Ruzbarsky JJ, ...
  • Blum JS, Barry MA, Mikos AG. Bone regeneration through transplantation ...
  • Kimelman N, Pelled G, Helm GA, Huard J, Schwarz EM, ...
  • Gao S, Chen B, Zhu Z, Du C, Zou J, ...
  • Chen G, Deng S, Zuo M, Wang J, Cheng D, ...
  • Minamide A, Boden SD, Viggeswarapu M, Hair GA, Oliver C, ...
  • Chen Z, Gan L, Chen X, Zheng J, Shi S, ...
  • Hsu MN, Huang KL, Yu FJ, Lai PL, Truong AV, ...
  • Kato H, Watanabe K, Saito A, Onodera S, Azuma T, ...
  • Huo S, Zhou Y, He X, Wan M, Du W, ...
  • Chen X, Xie W, Zhang M, Shi Y, Xu S, ...
  • نمایش کامل مراجع