Optimizing Reservoir Operations with Reinforcement Learning: A Data-Driven Framework
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 121
This Paper With 12 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CEAS-1-4_006
تاریخ نمایه سازی: 3 شهریور 1404
Abstract:
Effective reservoir management demands adaptive, data-driven strategies to optimize storage and release decisions while balancing multiple, often competing, operational objectives. This study investigates the application of Q-Learning, a model-free reinforcement learning (RL) algorithm, for optimizing reservoir releases under dynamic and uncertain hydrological conditions. Unlike conventional rule-based or offline optimization methods, the proposed RL approach continuously refines its release policy by learning from environmental feedback and observed states, enabling real-time adaptation without the need for a predefined system model. The framework is tested on the Dez Reservoir in Iran, a real-world case study characterized by significant inflow variability and seasonal water demand. Simulation results demonstrate that Q-Learning effectively manages operational complexity, maintaining storage within prescribed bounds and delivering release patterns closely aligned with demand. To benchmark performance, a simplified Ant Colony Optimization (ACO) model is implemented for comparison. While ACO shows moderate capability in deficit reduction, Q-Learning outperforms it in terms of constraint satisfaction and long-term feasibility. Findings highlight the strong potential of reinforcement learning to support intelligent, scalable, and robust decision-making in modern reservoir operation systems under uncertainty.
Keywords:
Authors
Fariborz Masoumi
Department of Civil Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
Mehdi Jorabloo
Department of Water Engineering, Islamic Azad University, Garmsar, Iran
Gholamreza Shobeyri
Faculty of Civil, Water & Environmental Engineering, Shahid Beheshti University, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :