Optimizing Reservoir Operations with Reinforcement Learning: A Data-Driven Framework

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 121

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_CEAS-1-4_006

تاریخ نمایه سازی: 3 شهریور 1404

Abstract:

Effective reservoir management demands adaptive, data-driven strategies to optimize storage and release decisions while balancing multiple, often competing, operational objectives. This study investigates the application of Q-Learning, a model-free reinforcement learning (RL) algorithm, for optimizing reservoir releases under dynamic and uncertain hydrological conditions. Unlike conventional rule-based or offline optimization methods, the proposed RL approach continuously refines its release policy by learning from environmental feedback and observed states, enabling real-time adaptation without the need for a predefined system model. The framework is tested on the Dez Reservoir in Iran, a real-world case study characterized by significant inflow variability and seasonal water demand. Simulation results demonstrate that Q-Learning effectively manages operational complexity, maintaining storage within prescribed bounds and delivering release patterns closely aligned with demand. To benchmark performance, a simplified Ant Colony Optimization (ACO) model is implemented for comparison. While ACO shows moderate capability in deficit reduction, Q-Learning outperforms it in terms of constraint satisfaction and long-term feasibility. Findings highlight the strong potential of reinforcement learning to support intelligent, scalable, and robust decision-making in modern reservoir operation systems under uncertainty.

Authors

Fariborz Masoumi

Department of Civil Engineering, University of Mohaghegh Ardabili, Ardabil, Iran

Mehdi Jorabloo

Department of Water Engineering, Islamic Azad University, Garmsar, Iran

Gholamreza Shobeyri

Faculty of Civil, Water & Environmental Engineering, Shahid Beheshti University, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Emami-Skardi, M. J., Shobeyri, G., Kerachian, R. Analysis of Stakeholder ...
  • Afshar, A., Emami Skardi, M. J., Jerani, F. Pond designing ...
  • Masoumi, F., Masoumzadeh, S., Zafari, N., Emami-Skardi, M. J. Optimal ...
  • Afshar, A., Emami Skardi, M. J., Masoumi, F. Optimizing water ...
  • Emami Skardi, M. J., Afshar, A., Saadatpour, M., Sandoval Solis, ...
  • Skardi, M. J. E., Afshar, A., Solis, S. S. Simulation-optimization ...
  • Moradikian, S., Emami-Skardi, M. J., Kerachian, R. A distributed constraint ...
  • Emamjomehzadeh, O., Kerachian, R., Emami-Skardi, M. J., Momeni, M. Combining ...
  • Masoumi, F., Masoumzadeh, S., Zafari, N., Javad Emami-Skardi, M. Optimum ...
  • Tabari, M. M. R., Azadani, M. N., Kamgar, R. Development ...
  • Tabari, M. M. R., Safari, R. Development of water re-allocation ...
  • Eyni, A., Skardi, M. J. E., Kerachian, R. A regret-based ...
  • Emamjomehzadeh, O., Omidi, F., Kerachian, R., Emami-Skardi, M. J., Momeni, ...
  • Sharifian, H., Emami-Skardi, M. J., Behzadfar, M., Faizi, M. Water ...
  • Li, C., Zhou, J., Ouyang, S., Ding, X., Chen, L. ...
  • Zhao, T., Cai, X., Lei, X., Wang, H. Improved dynamic ...
  • Zeng, X., Hu, T., Cai, X., Zhou, Y., Wang, X. ...
  • Tegegne, G., Kim, Y.-O. Representing inflow uncertainty for the development ...
  • Al-Aqeeli, Y. H., Mahmood Agha, O. M. A. Optimal Operation ...
  • Kim, Y.-G., Sun, B.-Q., Kim, P., Jo, M.-B., Ri, T.-H., ...
  • Ahmadianfar, I., Kheyrandish, A., Jamei, M., Gharabaghi, B. Optimizing operating ...
  • Emami, M., Nazif, S., Mousavi, S.-F., Karami, H., Daccache, A. ...
  • Moeini, R., Babaei, M. Hybrid SVM-CIPSO methods for optimal operation ...
  • Ehteram, M., Banadkooki, F. B., Fai, C. M., Moslemzadeh, M., ...
  • Chong, K. L., Lai, S. H., Ahmed, A. N., Wan ...
  • Paliwal, V., Ghare, A. D., Mirajkar, A. B., Bokde, N. ...
  • Latif, S. D., Marhain, S., Hossain, M. S., Ahmed, A. ...
  • Zhang, Z., Qin, H., Yao, L., Liu, Y., Jiang, Z., ...
  • Feng, Z.-k., Liu, S., Niu, W.-j., Li, B.-j., Wang, W.-c., ...
  • Yaseen, Z. M., Allawi, M. F., Karami, H., Ehteram, M., ...
  • Liu, D., Huang, Q., Yang, Y., Liu, D., Wei, X. ...
  • Feng, Z.-k., Niu, W.-j., Zhang, R., Wang, S., Cheng, C.-t. ...
  • Meng, X., Chang, J., Wang, X., Wang, Y. Multi-objective hydropower ...
  • Zhang, R., Zhou, J., Ouyang, S., Wang, X., Zhang, H. ...
  • Raso, L., Bader, J.-C., Weijs, S. Reservoir operation optimized for ...
  • Luo, J., Qi, Y., Xie, J., Zhang, X. A hybrid ...
  • Niu, W.-j., Feng, Z.-k., Liu, S. Multi-strategy gravitational search algorithm ...
  • Li, F.-F., Qiu, J. Multi-objective optimization for integrated hydro–photovoltaic power ...
  • Bai, T., Wei, J., Chang, F.-J., Yang, W., Huang, Q. ...
  • Kurek, W., Ostfeld, A. Multi-objective optimization of water quality, pumps ...
  • Allawi, M. F., Jaafar, O., Mohamad Hamzah, F., Koting, S. ...
  • Asadieh, B., Afshar, A. Optimization of water-supply and hydropower reservoir ...
  • He, Y., Xu, Q., Yang, S., Liao, L. Reservoir flood ...
  • Turgut, M. S., Turgut, O. E., Afan, H. A., El-Shafie, ...
  • Skardi, M. J. E., Kerachian, R., Abdolhay, A. Water and ...
  • نمایش کامل مراجع