Enhanced High-Dimensional Data Classification by Combining Fuzzy Learning Integration and Graph Transformers
Publish place: Iranian Journal of Fuzzy Systems، Vol: 22، Issue: 2
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 75
This Paper With 18 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJFS-22-2_007
تاریخ نمایه سازی: 8 شهریور 1404
Abstract:
Graph neural networks and fuzzy models offer effective and practical methods for solving various tasks at the large-scale graph level. Large-scale graph embedding based on deep methods and fuzzy models is categorized into fusion and integration. Feature extraction and graph structure at the local and global levels are based on augmented graph fusion. In fusion-based graph embedding, the fuzzy model is used as an activation function based on an aggregated process. In some cases, the fusion of graph neural network methods with fuzzy systems has been successful. However, no effective methods have been developed for integrating fuzzy models with deep methods. Two main issues are associated with this integration: (۱) computational complexity due to the exponential increase in fuzzy rules with the number of features, and (۲) the complexity of the solution space due to the combination of fuzzy regression rules between inputs and outputs. Additionally, modeling at the large-scale graph level using linear regression and graph neural networks is not sufficient. Therefore, this paper proposes a feature and structure combination method at the local and global levels using a combination of fuzzy modeling and graph transformers, an integrated deep learning technique called Fuzzy Graph Transformer (FuzzyGT). We conducted experiments on deep learning graph datasets to compare with the proposed model. Our method achieved the best results compared to other advanced models
Keywords:
Authors
Sajad Bastami
Department of Computer Engineering, University of Kurdistan, Sanandej, Iran
Rojiar Pirmohamadiani
Department of Computer Engineering, University of Kurdistan, Sanandej, Iran
Mohammad bagher Dowlatshahi
Department of Computer Engineering, University of Lorestan, Khorramabad, Iran
Alireza Abdollahpouri
Department of Computer Engineering, University of Kurdistan, Sanandej, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :