Federated Learning for Scalable Anomaly Detection and Pattern Discovery in IoT-Enabled Aquaponics Systems

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 108

This Paper With 14 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJWR-8-3_001

تاریخ نمایه سازی: 11 شهریور 1404

Abstract:

This study introduces a federated learning-based architecture designed to support highly scalable and decentralized anomaly detection in IoT-integrated aquaponics systems. Emphasizing rigorous data privacy, the framework employs PrefixSpan for sequential pattern mining to extract significant temporal behaviors from heterogeneous distributed datasets. IoT sensors deployed across ۱۱ aquaponic ponds collected extensive datasets, each exceeding ۱۷۰,۰۰۰ entries, capturing vital indicators such as temperature, pH, turbidity, and fish growth metrics. The proposed FL model demonstrated strong correlations—exceeding ۰.۹—between water quality conditions and fish development, validating the system’s predictive robustness. Notably, Pond ۶ and Pond ۱۰ yielded ۱۲۶۹ and ۱۳۳۹ sequential patterns respectively, confirming the exceptional scalability of the model. The architecture also achieved a ۳۵% reduction in communication latency compared to conventional centralized systems, enabling responsive and efficient anomaly detection in real time. In parallel, a Top-k mining approach was employed to benchmark pattern interpretability as well as computational efficiency because it revealed trade-offs in sensitivity versus frequency-based simplification. Recent studies that focus upon aquaponics have also validated the operational superiority of the system in anomaly detection that is privacy-aware via comparison across models. The comparison highlighted its alignment to sustainable smart farming objectives. By addressing the limitations of centralized data handling, this framework offers a resilient, scalable, and privacy-aware approach to intelligent aquaponics management.

Authors

Saghar Shafaati

Department of Computer Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.

Javad Mohammadzadeh

Department of Computer Engineering, Ka.C., Islamic Azad University, Karaj, Iran, & Institute of Artificial Intelligence and Social and Advanced Technologies, Ka.C., Islamic Azad University, Karaj, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • F. Taha et al., “Recent advances of smart systems and ...
  • ۲۰۲۵.۳۵۲۸۵۲۷T. Modupe et al., “Reviewing the transformational impact of edge ...
  • engappai.۲۰۲۵.۱۱۱۲۱۴A. Ibrahim, M. Abu-Hashim, H. Shaghaleh, E. Elsadek, A. A. ...
  • نمایش کامل مراجع