Exploring the Relationship between User Posts and List Subscription Behaviors on Twitter/X

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 150

This Paper With 10 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JADM-13-2_009

تاریخ نمایه سازی: 12 شهریور 1404

Abstract:

Social media platforms have transformed information consumption, offering personalized features that enhance engagement and streamline content discovery. Among these, the Twitter Lists functionality allows users to curate content by grouping accounts based on shared themes, fostering focused interactions and diverse perspectives. Despite their widespread use, the relationship between user-generated content and List subscription behaviors remains insufficiently explored. This study examines the alignment between users' post topics and their subscribed Lists, along with the influence of activity levels on this alignment. The role of content diversity in shaping subscription patterns to Lists covering a range of topics is also investigated. Additionally, the extent to which the affective characteristics—sentiment and emotion—of user posts correspond with the emotional tone of subscribed List content is analyzed. Utilizing a comprehensive Twitter dataset, advanced techniques for topic modeling, sentiment analysis, and emotion extraction were applied, and profiles for both users and Lists were developed to facilitate the exploration of their interrelationship. These insights advance the understanding of user interactions with Lists, informing the development of personalized recommendation systems and improved content curation strategies, with broad implications for social media research and platform functionality.

Keywords:

social network analysis , Twitter Lists , Behavioral patterns in List subscriptions

Authors

Havva Alizadeh Noughabi

Computer and Electrical Engineering Department, University of Gonabad, Gonabad, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • S. de la Rouviere and K. Ehlers, "Lists as coping ...
  • D. Kim, Y. Jo, I.-C. Moon, and A. Oh, "Analysis ...
  • Y. Yamaguchi, T. Amagasa, and H. Kitagawa, "Tag-based user topic ...
  • P. Nasirifard and C. Hayes, "Tadvise: A Twitter assistant based ...
  • S. Wu, J. M. Hofman, W. A. Mason, and D. ...
  • J. H. Kang and K. Lerman, "Using lists to measure ...
  • A. García-Silva, J.-H. Kang, K. Lerman, and O. Corcho, "Characterising ...
  • S. Velichety and S. Ram, "Examining lists on Twitter to ...
  • K. Kaur, "Development of a framework for analyzing terrorism actions ...
  • M. Benabdelkrim, J. Savinien, and C. Robardet, "Finding interest groups ...
  • C. Saridakis, C. S. Katsikeas, S. Angelidou, M. Oikonomidou, and ...
  • M. Grootendorst, "BERTopic: Neural topic modeling with a class-based TF-IDF ...
  • R. Egger and J. Yu, "A topic modeling comparison between ...
  • H. Alizadeh Noughabi, B. Behkamal, and M. Kahani, "Description-based post-hoc ...
  • Blei, D.M., Ng, A.Y. and Jordan, M.I., ۲۰۰۳. Latent dirichlet ...
  • X. Cheng, X. Yan, Y. Lan, and J. Guo, "BTM: ...
  • W. Gao, M. Peng, H. Wang, Y. Zhang, Q. Xie, ...
  • F. Zarrinkalam, H. A. Noughabi, Z. Noorian, H. Fani, and ...
  • V. Sanh, L. Debut, J. Chaumond, and T. Wolf, "DistilBERT, ...
  • F. Amiri, S. Abbasi, and M. Babaie Mohamadeh, "Clustering methods ...
  • Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, ...
  • Z Noorian, A. Ghenai, H. Moradisani, F. Zarrinkaam, and S. ...
  • S. Z. Alavijeh, F. Zarrinkalam, Z. Noorian, A. Mehrpour, and ...
  • نمایش کامل مراجع