A Hybrid Feature Selection Technique Leveraging Principal Component Analysis And Support Vector Machines

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 134

This Paper With 16 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JADM-13-2_004

تاریخ نمایه سازی: 12 شهریور 1404

Abstract:

The abundance of high dimensional datasets and the computational limitations of data analysis processes in applying to high-dimensional data have made clear the importance of developing feature selection methods. The negative impact of irrelevant variables on prediction and increasing unnecessary calculations due to the redundant attributes lead to poor results or performance of the classifiers. Feature selection is, therefore, applied to facilitate a better understanding of the datasets, reduce computational time, and enhance prediction accuracy. In this research, we develop a composite method for feature selection that combines support vector machines and principal component analysis. Then the method is implemented to the -nearest neighbor and the Naïve Bayes algorithms. The datasets utilized in this study consist of three from the UCI Machine Learning Repository, used to assess the performance of the proposed models. Additionally, a dataset gathered from the central library of Ayatollah Boroujerdi University was considered. This dataset encompasses ۱,۹۱۰ instances with ۳۰ attributes, including gender, native status, entry term, faculty code, cumulative GPA, and the number of books borrowed. After applying the proposed feature selection method, an accuracy of ۷۰% was obtained with only five features. Experimental results demonstrate that the proposed feature selection method chooses appropriate feature subset. The approach yields enhanced classification performance, as evaluated by metrics such as accuracy, -score and Matthews correlation coefficient.

Authors

Sayyed Mohammad Hoseini

Gahar Artificial Intelligence Research Group, Ayatollah Boroujerdi University, Boroujerd, Iran.

Majid Ebtia

Gahar Artificial Intelligence Research Group, Ayatollah Boroujerdi University, Boroujerd, Iran.

Mohanna Dehgardi

Gahar Artificial Intelligence Research Group, Ayatollah Boroujerdi University, Boroujerd, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • G. Chandrashekar and F. Sahin, “A survey on feature selection ...
  • I. Guyon and A. Elisseeff, “An introduction to variable and ...
  • R. Kohavi and G. H. John, “Wrappers for feature subset ...
  • S. A. Ali Shah, H. M. Shabbir, S. U. Rehman, ...
  • J. Han, M. Kamber, and J. Pei, Data Mining, ۳rd ...
  • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene ...
  • F. Song, Z. Guo, and D. Mei, “Feature selection using ...
  • G. R. Naik, Advances in Principal Component Analysis: Research and ...
  • H. Zhang, “The optimality of Naïve Bayes,” in V. Barr ...
  • E. O. Omuya, G. O. Okeyo, and M. W. Kimwele, ...
  • S. Kashef, H. Nezamabadi-Pour, and B. Nikpour, “Multilabel feature selection: ...
  • S. Solorio-Fernández, J. A. Carrasco-Ochoa, and J. F. Martínez-Trinidad, “A ...
  • J. Tang, S. Alelyani, and H. Liu, “Feature selection for ...
  • W. Zheng et al., “Multifeature based network revealing the structural ...
  • R. Sheikhpour, M. A. Sarram, S. Gharaghani, and M. A. ...
  • J. C. Ang, A. Mirzal, H. Haron, and H. N. ...
  • T. A. Alhaj et al., “Feature selection using information gain ...
  • Z. Zhao, L. Wang, and H. Liu, “Efficient spectral feature ...
  • D. Cai, C. Zhang, and X. He, “Unsupervised feature selection ...
  • J. Nobre and R. F. Neves, “Combining principal component analysis, ...
  • P. Sanguansat, Ed., Principal Component Analysis. IntechOpen: Rijeka, ۲۰۱۲ ...
  • M. A. Jabri, “High Performance Principal Component Analysis with ParAL,” ...
  • K. Song, B. Zhang, W. Li, L. Yan, and X. ...
  • N. Funatsu and Y. Kuroki, “Fast parallel processing using GPU ...
  • D. A. Ross, J. Lim, R. S. Lin, and M. ...
  • N. Halko, P. G. Martinsson, and J. A. Tropp, “Finding ...
  • C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. ...
  • T. Hastie, The Elements of Statistical Learning, Springer Series in ...
  • A. I. Pratiwi and Adiwijaya, “On the feature selection and ...
  • X. Xu, H. Gu, Y. Wang, J. Wang, and P. ...
  • A. Zien, N. Krämer, S. Sonnenburg, and G. Rätsch, “The ...
  • I. Kamkar, S. K. Gupta, D. Phung, and S. Venkatesh, ...
  • W. W. B. Goh and L. Wong, “Evaluating feature-selection stability ...
  • S. Raghavendra and M. Indiramma, “Hybrid data mining model for ...
  • B. Xin, L. Hu, Y. Wang, and W. Gao, “Stable ...
  • A. Mehrabinezhad, M. Teshnelab, and A. Sharifi, “Autoencoder-PCA-based Online Supervised ...
  • R. Adhao and V. Pachghare, “Feature selection using principal component ...
  • I. T. Jolliffe, Principal Component Analysis for Special Types of ...
  • L. Peterson, “K-nearest neighbor,” Scholarpedia, vol. ۴, no. ۲, p. ...
  • M. Lichman. (n.d.). UCI Machine Learning Repository. [Online]. Available: http://archive.ics.uci.edu/ml ...
  • H. Nosrati Nahook, and M. Eftekhari, “A new method for ...
  • E. Namsrai, T. Munkhdalai, M. Li, J. H. Shin, O. ...
  • R. Jain, P. R. Betrabet, B. A. Rao, and N. ...
  • M. Tunç and G. B. Cangöz, “Classification of the cardiac ...
  • Liang, C. F. Tsai, and H. T. Wu, “The effect ...
  • Y. Zhou, M. Shamsu Uddin, T. Habib, G. Chi, and ...
  • A. Rouhi and H. Nezamabadi-Pour, “A hybrid-based feature selection method ...
  • M. A. Rahman and R. C. Muniyandi, “Feature selection from ...
  • O. O. Petinrin, F. Saeed, N. Salim, M. Toseef, Z. ...
  • S. DeepaLakshmi and T. Velmurugan, “Benchmarking attribute selection techniques for ...
  • C. De Stefano, F. Fontanella, and A. Scotto di Freca, ...
  • A. Mehrabinezhad, M. Teshnelab, and A. Sharifi, “Autoencoder-PCA-based online supervised ...
  • K. Yang, Z. Cai, J. Li, and G. Lin, “A ...
  • F. H. Yağın, Z. Küçükakçalı, İ. B. Çiçek, and H. ...
  • M. Hamim, I. El Mouden, M. Ouzir, H. Moutachaouik, and ...
  • S. Karimi and M. Farrokhnia, “Leukemia and small round blue-cell ...
  • L. Y. Chuang, C. H. Ke, and C. H. Yang, ...
  • S. J. Susmi, H. K. Nehemiah, and A. Kannan, “Hybrid ...
  • T. K. Abuya, “Lung cancer prediction from Elvira biomedical dataset ...
  • D. Powers, “Evaluation: From precision, recall and F-measure to ROC, ...
  • نمایش کامل مراجع