Valvular Heart Disease Classification through Hierarchical Decomposition via Matrix Factorization of Scalogram-Based Phonocardiogram Representations
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 97
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-13-3_009
تاریخ نمایه سازی: 12 شهریور 1404
Abstract:
This study introduces a novel classification framework based on Deep Orthogonal Non-Negative Matrix Factorization (Deep ONMF), which leverages scalogram representations of phonocardiogram (PCG) signals to hierarchically extract structural features crucial for detecting valvular heart diseases (VHDs). Scalograms, generated via the Continuous Wavelet Transform (CWT), serve as the foundational input to the proposed feature extraction pipeline, which integrates them with Deep ONMF in a unified and segmentation-free architecture. The resulting scalogram–Deep ONMF framework is designed to hierarchically extract features through two complementary perspectives: Scale-Domain Analysis (SDA) and Temporal-Domain Analysis (TDA). These extracted features are then classified using shallow classifiers, with Random Forest (RF) achieving the best results, particularly when paired with SDA features based on the Bump wavelet. Experimental evaluations on two public PCG datasets—one with five heart sound classes and another with binary classification—demonstrate the effectiveness of the proposed method, achieving high classification accuracies of up to ۹۸.۴۰% and ۹۷.۲۳%, respectively, thereby confirming its competitiveness with state-of-the-art techniques. The results suggest that the proposed approach offers a practical and powerful solution for automated heart sound analysis, with potential applications beyond VHD detection.
Keywords:
Phonocardiogram (PCG) , Valvular heart disease (VHD) , Deep Orthogonal Non-Negative Matrix Factorization (Deep ONMF) , Scalogram , Time–Frequency Analysis
Authors
Samira Moghani
Faculty of Electrical Engineering, Shahrood University of Technology, Shahrood, Iran.
Hossein Marvi
Faculty of Electrical Engineering, Shahrood University of Technology, Shahrood, Iran.
Zeynab Mohammadpoory
Faculty of Electrical Engineering, Shahrood University of Technology, Shahrood, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :