Cutting-Edge Spectral Solutions for Differential and Integral Equations Utilizing Legendre’s Derivatives
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 84
This Paper With 39 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAO-15-34_008
تاریخ نمایه سازی: 15 شهریور 1404
Abstract:
This research introduces a spectral numerical method for solving some types of integral equations, which is the pseudo-Galerkin spectral method. The presented method depends on Legendre’s first derivative polynomials as basis functions. Subsequently, an operational integration matrix has been constructed to express integrals as a linear combination of these basis functions. This process transforms the given integral equation into a system of algebraic equations. The unknowns of the obtained system are the spectral expansion constants. Then, we solve the obtained algebraic system using the Gauss elimination method for linear systems or Newton’s iteration method for nonlinear systems. This approach yields the desired semi-analytic approximate solution. Additionally, our method extends to the solution of ordinary differential equations, as every initial value problem can be equivalently represented as a corresponding Volterra integral equation. On the other hand, every boundary value problem can be transformed into a corresponding Fredholm integral equation. This transformation is achieved by incorporating the given conditions. Moreover, convergence and error analyses are thoroughly examined. Finally, to validate the efficiency and accuracy of the proposed method, we conduct numerical test problems.
Keywords:
Authors
A.M. Abbas
Mathematics Department, Faculty of Science, Helwan University, Helwan ۱۱۷۹۵, Egypt, Helwan School of Numerical Analysis in Egypt (HSNAE).
Y.H. Youssri
Mathematics Department, Faculty of Science, Cairo University, Giza ۱۲۶۱۳, Egypt.
M. El-Kady
Mathematics Department, Faculty of Science, Helwan University, Helwan ۱۱۷۹۵, Egypt, Helwan School of Numerical Analysis in Egypt (HSNAE).
M. Abdelhakem
Mathematics Department, Faculty of Science, Helwan University, Helwan ۱۱۷۹۵, Egypt, Helwan School of Numerical Analysis in Egypt (HSNAE).
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :