Approximate symmetries of the perturbed KdV-KS equation
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 83
This Paper With 16 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAO-15-34_003
تاریخ نمایه سازی: 15 شهریور 1404
Abstract:
The analysis of approximate symmetries in perturbed nonlinear partial differential equations (PDEs) stands as a cornerstone for unraveling complex physical behaviors and solution patterns. This paper delves into the investigation of approximate symmetries inherent in the perturbed Korteweg-de Vries and Kuramoto-Sivashinsky (KdV-KS) equation, fundamental models in the realm of fluid dynamics and wave phenomena. Our study commences by detailing the method to derive approximate vector Lie symmetry generators that underpin the approximate symmetries of the perturbed KdV-KS equation. These generators, while not exact, provide invaluable insights into the equation’s dynamics and solution characteristics under perturbations. A comprehensive approximate commutator table is subsequently constructed, elucidating the relationships and interplay between these approximate symmetries and shedding light on their algebraic structure. Leveraging the power of the adjoint representation, we examine the stability of these approximate symmetries when subjected to perturbations. This analysis enables us to discern the most resilient symmetries, instrumental in identifying intrinsic features that persist even in the face of disturbances. Furthermore, we harness the concept of approximate symmetry reductions, a pioneering technique that allows us to distill crucial dynamics from the complexity of the perturbed equation. Through this methodology, we uncover invariant solutions and reduced equations that serve as effective surrogates for the original system, capturing its essential behavior and facilitating analytical and numerical investigations. In summary, our exploration into the approximate symmetries of the perturbed KdV-KS equation not only advances our comprehension of the equation’s intricate dynamics but also offers a comprehensive framework for studying the impact of perturbations on approximate symmetries, all while opening new avenues for tackling nonlinear PDEs in diverse scientific disciplines.
Keywords:
Authors
A. Mohammadpouri
Faculty of Mathematics, Statistics and Computer Sciences, University of Tabriz, Tabriz, Iran.
M.S. Hashemi
Department of Mathematics, Basic Science Faculty, University of Bonab, Bonab, Iran.
R. Abbasi
Faculty of Mathematics, Statistics and Computer Sciences, University of Tabriz, Tabriz, Iran.
R. Abbasi
Faculty of Mathematics, Statistics and Computer Sciences, University of Tabriz, Tabriz, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :