Estimating the Initial Pressure, Permeability and Skin Factor of Oil Reservoirs Using Artificial Neural Networks
Publish place: 10th National Iranian Chemical Engineering Congress
Publish Year: 1384
Type: Conference paper
Language: English
View: 2,066
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
NICEC10_358
Index date: 26 January 2007
Estimating the Initial Pressure, Permeability and Skin Factor of Oil Reservoirs Using Artificial Neural Networks abstract
Artificial neural network, a biologically inspired computing method which has an ability to learn, self-adjust, and be trained, provides a powerful tool in solving pattern recognition problems. In this study, a new approach based on artificial neural networks (ANNs) has been designed to estimate the initial pressure, permeability and skin factor of oil reservoir using the pressure build up test data. Five sets of actual field data in conventional and dual porosity reservoirs have been used to test the results of the neural network. The results from the network are in good agreement with the results from Horner plot. Finally, it is shown that the application of artificial neural networks in a pressure build up test reduces the cost of the test and it is also a valuable tool for well testing.
Estimating the Initial Pressure, Permeability and Skin Factor of Oil Reservoirs Using Artificial Neural Networks Keywords:
Artificial neural networks , Initial pressure , Permeability , Skin factor , Pressure build up test , Well test
Estimating the Initial Pressure, Permeability and Skin Factor of Oil Reservoirs Using Artificial Neural Networks authors
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :