An MLP-Based Deep Neural Network Incorporating SMOTE-Tomek Approach for Robust Prediction of Liver Disorders
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 91
This Paper With 14 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-13-4_006
تاریخ نمایه سازی: 5 مهر 1404
Abstract:
Liver disorders are among the most common diseases worldwide, and their timely diagnosis and prediction can significantly improve treatment outcomes. In recent years, the application of artificial intelligence, particularly machine learning and deep learning algorithms, in the medical field has gained tremendous importance and has led to reduced healthcare costs. In this study, the ILPD dataset from the UCI Machine Learning Repository, which comprises ۵۸۳ liver patient records with ۱۱ features, was utilized. In this research, a predictive framework based on Multilayer Perceptron (MLP) is employed for the prediction of liver disorders. To address the class imbalance in the binary classification dataset, the Synthetic Minority Oversampling Technique (SMOTE)–Tomek approach was implemented to improve data balance. Moreover, due to the presence of a substantial number of outlier values, a robust scaling method was applied for their management. Finally, the performance of the proposed method was compared with three well-known machine learning algorithms. To enhance evaluation robustness, a five-fold cross-validation was employed across all classifiers. All simulations were conducted using Python, and the results illustrate that the proposed method achieves superior performance, with an accuracy of ۹۰.۹۰% compared to state-of-the-art approaches.
Keywords:
Authors
Elahe Moradi
Department of Electrical Engineering, YI.C, Islamic Azad University, Tehran, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :