Application of Dusty Gas Model to Study non- Isothermal Effects in Methanol Synthesis
Publish place: 10th National Iranian Chemical Engineering Congress
Publish Year: 1384
Type: Conference paper
Language: English
View: 2,192
This Paper With 16 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
NICEC10_570
Index date: 26 January 2007
Application of Dusty Gas Model to Study non- Isothermal Effects in Methanol Synthesis abstract
The dusty gas model is used to establish the effect of temperature and pressure gradients on catalyst pellet effectiveness factors for the methanol synthesis reaction. A comparison is presented between the isothermal and non-isothermal model prediction of effectiveness factor. The cases studied cover the operational range of temperature, pressure and composition for the commercial methanol synthesis reactors. The results do not show any meaningful deviation for the industrial size catalyst, thus the isothermal model can be used safely for modeling intra-particle diffusion limitations in the industrial reactor. Furthermore, the role of bulk diffusion and thermo-diffusion in setting up the concentration
gradient is studied. Both of the phenomena show negligible contribution to the overall molar flux. Pressure gradient, however, should not be neglected even though it may not contribute directly to the total flux. Assumption of an isobaric pellet can lead to contradiction with conservation of mass. To assess the validity of Fick’s equation approximation to the dusty gas model, the results of the dusty gas model and Fick’s equation are compared and the shortcomings of Fick’s approximation in explaining multi-component diffusion is studied. Effectiveness factors obtained from Fick’s equation with an effective diffusion coefficient does not show much deviation from the rigorous dusty gas model, however when tilized to study the phenomena inside a catalyst pellet, it is shown that it can be misleading in some cases.
Application of Dusty Gas Model to Study non- Isothermal Effects in Methanol Synthesis Keywords:
Application of Dusty Gas Model to Study non- Isothermal Effects in Methanol Synthesis authors
Zeinab Hosseini Doust
Chemical &Petroleum Engineering Dept., Sharif University of Technology
Fatolah Farhadi
Chemical &Petroleum Engineering Dept., Sharif University of Technology
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :