Bridging Pre-Operative Planning and Intra-Operative Decision-Making: A Systematic Review of Information-Management Strategies in AR-Enhanced Surgery

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 66

This Paper With 14 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_ISJTREND-2-7_002

تاریخ نمایه سازی: 9 آذر 1404

Abstract:

Augmented reality (AR) is transforming surgical practice by integrating pre-operative planning with intra-operative decision-making. This systematic review critically evaluates AR systems that bridge these phases through information-management strategies, focusing on real-time data fusion, contextual access to patient history, and mitigation of technical challenges. Following PRISMA ۲۰۲۰ guidelines, we analyzed ۱۰ studies (from ۲,۲۰۹ screened records) that met inclusion criteria, spanning clinical deployments, cadaver trials, and simulated environments. Three dominant strategies emerged: (۱) holistic multimodal + EHR integration (exemplified by ARAS), achieving sub-۵۰ ms latency and reducing cognitive load via conversational interfaces; (۲) real-time imaging fusion without EHR access, yielding sub-۵ mm overlay accuracy but requiring external data checks; and (۳) conceptual frameworks proposing workflow-aware navigation with limited validation. Key findings demonstrate that systems combining spatial coherence, semantic interoperability, context-aware filtering, and hands-free input (e.g., ARAS) significantly enhance workflow continuity and surgeon confidence. However, persistent challenges include latency ceilings, vendor-locked data silos, and uneven outcome reporting—only two studies measured patient-level end-points. Cross-cutting observations highlight latency as the universal performance bottleneck and semantic interoperability as the linchpin for scalable integration. This review identifies four pillars for next-generation AR surgical systems and calls for standardized metrics to evaluate their clinical impact. While evidence supports AR’s potential to improve precision and efficiency, multicenter trials are needed to validate patient outcomes.

Authors

Sana Asadi Ashenaabad

Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.

Nasrin Lotfi

Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.

Danial Daryabeigi Salami

Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.

Paniz Negareshifard

Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.

Afshin Zarei

Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :