Observability-Guided Autonomous Path Planning for Quadrotor Navigation in GNSS-Denied Environments
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 45
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JASTI-18-2_003
تاریخ نمایه سازی: 19 آذر 1404
Abstract:
Localization of a quadrotor in an unknown environment without access to Global Navigation Satellite System (GNSS) data, utilizing Simultaneous Localization and Mapping (SLAM), has shown promising results. The integration of SLAM and the Extended Kalman Filter (EKF) provides precise estimations of both the quadrotor’s position and the terrestrial landmark locations. This paper reviews the Observability-Based Path Planning (OBPP) and evaluates its performance in comparison to Monte Carlo Path Planning (MCPP). Furthermore, due to the importance of the initialization process in path planning for pre-planned methods, the performance of OBPP is evaluated for various initial positions. Simulation results demonstrate that the proposed method offers superior accuracy and greater robustness for different initial conditions, validating its effectiveness in diverse scenarios. The robustness and adaptability of this approach make it a valuable contribution to the field of autonomous navigation, especially in environments where GNSS is unavailable. This research advances the precision and reliability of quadrotor localization and path planning.
Keywords:
Authors
Mohammad-Ali Amiri Atashgah
Department of College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
Samaneh Elahian
Department of College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
Bahram Tarvirdizadeh
College of Interdisciplinary Science and Technology, School of Intelligent Systems Engineering, University of Tehran, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :