Energy and Exergy Analysis of Apple Drying Using Fluidized Bed Method: A Comparison of GMDH Neural Network and ANN-GA Models
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 43
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_BERE-1-1_001
تاریخ نمایه سازی: 22 آذر 1404
Abstract:
This research, which has practical implications for the food engineering and processing industry, estimated the energy and exergy of apple drying using a Group Method of Data Handling (GMDH) neural network and a hybrid artificial neural network-genetic algorithm (ANN-GA). Osmotic and natural samples were tested in the form of apple cubes with a height of ۵ mm and sides of ۱۰ mm ×۱۰ mm, ۸ mm × ۸ mm, and ۶ mm × ۶ mm dried by fluidized bed method at three air velocities of ۴, ۶, and ۸ m/s and temperatures of ۴۰, ۴۵, and ۵۰℃. The results showed that energy consumption, energy use ratio, exergy efficiency, and exergy loss were elevated by increasing the temperature and air velocity and reducing the sample sizes in natural and osmotic samples, which were directly relevant to the industry. It was also observed that the GMDH neural network for energy consumption, energy use ratio, exergy loss, and exergy efficiency have linear correlation coefficients (R) of ۰.۹۵۰۹۷, ۰.۹۲۲۰۲, ۰.۹۱۴۶۴, and ۰.۹۱۲۵۸, respectively, suggesting that it outperforms the ANN-GA. The weakest performance of the GMDH network was associated with the exergy efficiency. The ANN-GA had the best energy consumption and lowest exergy loss performance.
Keywords:
Authors
mohammad vahedi Torshizi
Department of Biosystems Engineering, Tarbiat Modares University, Tehran, Iran
Arash Rokhbin
Department of Biosystem Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
Armin Ziaratban
Department of Biosystems Mechanical Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :